Your browser doesn't support javascript.
loading
Bridged-Imidazole Dimer Exhibiting Three-State Negative Photochromism with a Single Photochromic Unit.
Ito, Hiroki; Mutoh, Katsuya; Abe, Jiro.
Afiliación
  • Ito H; Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
  • Mutoh K; Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
  • Abe J; Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan.
J Am Chem Soc ; 145(11): 6498-6506, 2023 Mar 22.
Article en En | MEDLINE | ID: mdl-36888966
ABSTRACT
Photochromic molecules that can exhibit multiple states of photochromism in a single photochromic unit are considered more attractive than traditional bistable photochromic molecules because they can offer more versatility and control in photoresponsive systems. We have synthesized a negative photochromic 1-(1-naphthyl)pyrenyl-bridged imidazole dimer (NPy-ImD) that has three different isomers a colorless isomer, 6MR, a blue-colored isomer, 5MR-B, and a red-colored isomer, 5MR-R. NPy-ImD can interconvert between these isomers via a short-lived transient biradical, BR, upon photoirradiation. 5MR-R is the most stable isomer, and the energy levels of 6MR, 5MR-B, and BR are relatively close to each other. The colored isomers 5MR-R and 5MR-B are photochemically isomerized to 6MR via the short-lived BR upon irradiation with blue light and red light, respectively. The absorption bands of 5MR-R and 5MR-B are well separated by more than 150 nm, with a small overlap, which means they can be selectively excited with different light sources, visible light for 5MR-R and NIR light for 5MR-B. The colorless isomer 6MR is formed from the short-lived BR through a kinetically controlled reaction. 6MR and 5MR-B can then be converted to the more stable isomer 5MR-R through a thermodynamically controlled reaction, which is facilitated by the thermally accessible intermediate, BR. Notably, 5MR-R photoisomerizes to 6MR when irradiated with CW-UV light, whereas it photoisomerizes to 5MR-B by a two-photon process when irradiated with nanosecond UV laser pulses.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: Japón