Your browser doesn't support javascript.
loading
Lithium-Directed Transformation of Amorphous Iridium (Oxy)hydroxides To Produce Active Water Oxidation Catalysts.
Ruiz Esquius, Jonathan; Morgan, David J; Algara Siller, Gerardo; Gianolio, Diego; Aramini, Matteo; Lahn, Leopold; Kasian, Olga; Kondrat, Simon A; Schlögl, Robert; Hutchings, Graham J; Arrigo, Rosa; Freakley, Simon J.
Afiliación
  • Ruiz Esquius J; Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
  • Morgan DJ; International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal.
  • Algara Siller G; Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
  • Gianolio D; Department of Inorganic Chemistry, Fritz Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
  • Aramini M; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, U.K.
  • Lahn L; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, U.K.
  • Kasian O; Helmholtz Institut Erlangen-Nürnberg, Helmholtz-Zentrum Berlin GmbH, Cauerstr. 1, 91058 Erlangen, Germany.
  • Kondrat SA; Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • Schlögl R; Helmholtz Institut Erlangen-Nürnberg, Helmholtz-Zentrum Berlin GmbH, Cauerstr. 1, 91058 Erlangen, Germany.
  • Hutchings GJ; Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • Arrigo R; Department of Chemistry, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K.
  • Freakley SJ; Department of Inorganic Chemistry, Fritz Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
J Am Chem Soc ; 145(11): 6398-6409, 2023 Mar 22.
Article en En | MEDLINE | ID: mdl-36892000
ABSTRACT
The oxygen evolution reaction (OER) is crucial to future energy systems based on water electrolysis. Iridium oxides are promising catalysts due to their resistance to corrosion under acidic and oxidizing conditions. Highly active iridium (oxy)hydroxides prepared using alkali metal bases transform into low activity rutile IrO2 at elevated temperatures (>350 °C) during catalyst/electrode preparation. Depending on the residual amount of alkali metals, we now show that this transformation can result in either rutile IrO2 or nano-crystalline Li-intercalated IrOx. While the transition to rutile results in poor activity, the Li-intercalated IrOx has comparative activity and improved stability when compared to the highly active amorphous material despite being treated at 500 °C. This highly active nanocrystalline form of lithium iridate could be more resistant to industrial procedures to produce PEM membranes and provide a route to stabilize the high populations of redox active sites of amorphous iridium (oxy)hydroxides.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido