Your browser doesn't support javascript.
loading
Cross-modal autoencoder framework learns holistic representations of cardiovascular state.
Radhakrishnan, Adityanarayanan; Friedman, Sam F; Khurshid, Shaan; Ng, Kenney; Batra, Puneet; Lubitz, Steven A; Philippakis, Anthony A; Uhler, Caroline.
Afiliación
  • Radhakrishnan A; Massachusetts Institute of Technology, Cambridge, USA.
  • Friedman SF; Broad Institute of MIT and Harvard, Cambridge, USA.
  • Khurshid S; Broad Institute of MIT and Harvard, Cambridge, USA.
  • Ng K; Massachusetts General Hospital, Massachusetts, USA.
  • Batra P; IBM T.J. Watson Research Center, New York, USA.
  • Lubitz SA; Broad Institute of MIT and Harvard, Cambridge, USA.
  • Philippakis AA; Broad Institute of MIT and Harvard, Cambridge, USA. lubitz@broadinstitute.org.
  • Uhler C; Massachusetts General Hospital, Massachusetts, USA. lubitz@broadinstitute.org.
Nat Commun ; 14(1): 2436, 2023 04 28.
Article en En | MEDLINE | ID: mdl-37105979
A fundamental challenge in diagnostics is integrating multiple modalities to develop a joint characterization of physiological state. Using the heart as a model system, we develop a cross-modal autoencoder framework for integrating distinct data modalities and constructing a holistic representation of cardiovascular state. In particular, we use our framework to construct such cross-modal representations from cardiac magnetic resonance images (MRIs), containing structural information, and electrocardiograms (ECGs), containing myoelectric information. We leverage the learned cross-modal representation to (1) improve phenotype prediction from a single, accessible phenotype such as ECGs; (2) enable imputation of hard-to-acquire cardiac MRIs from easy-to-acquire ECGs; and (3) develop a framework for performing genome-wide association studies in an unsupervised manner. Our results systematically integrate distinct diagnostic modalities into a common representation that better characterizes physiologic state.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sistema Cardiovascular / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sistema Cardiovascular / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos