Your browser doesn't support javascript.
loading
Evolution of 1/f Flux Noise in Superconducting Qubits with Weak Magnetic Fields.
Rower, David A; Ateshian, Lamia; Li, Lauren H; Hays, Max; Bluvstein, Dolev; Ding, Leon; Kannan, Bharath; Almanakly, Aziza; Braumüller, Jochen; Kim, David K; Melville, Alexander; Niedzielski, Bethany M; Schwartz, Mollie E; Yoder, Jonilyn L; Orlando, Terry P; Wang, Joel I-Jan; Gustavsson, Simon; Grover, Jeffrey A; Serniak, Kyle; Comin, Riccardo; Oliver, William D.
Afiliación
  • Rower DA; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Ateshian L; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Li LH; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Hays M; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Bluvstein D; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Ding L; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Kannan B; Department of Physics, Harvard University, Cambridge, Massachusetts 02139, USA.
  • Almanakly A; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Braumüller J; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Kim DK; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Melville A; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Niedzielski BM; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Schwartz ME; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Yoder JL; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Orlando TP; MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA.
  • Wang JI; MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA.
  • Gustavsson S; MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA.
  • Grover JA; MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA.
  • Serniak K; MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA.
  • Comin R; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Oliver WD; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett ; 130(22): 220602, 2023 Jun 02.
Article en En | MEDLINE | ID: mdl-37327421
ABSTRACT
The microscopic description of 1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation. Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study. Here, we apply weak in-plane magnetic fields to a capacitively shunted flux qubit (where the Zeeman splitting of surface spins lies below the device temperature) and study the flux-noise-limited qubit dephasing, revealing previously unexplored trends that may shed light on the dynamics behind the emergent 1/f noise. Notably, we observe an enhancement (suppression) of the spin-echo (Ramsey) pure-dephasing time in fields up to B=100 G. With direct noise spectroscopy, we further observe a transition from a 1/f to approximately Lorentzian frequency dependence below 10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field. We suggest that these trends are qualitatively consistent with an increase of spin cluster sizes with magnetic field. These results should help to inform a complete microscopic theory of 1/f flux noise in superconducting circuits.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Campos Magnéticos Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Campos Magnéticos Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos