Your browser doesn't support javascript.
loading
A simple planning problem for COVID-19 lockdown: a dynamic programming approach.
Calvia, Alessandro; Gozzi, Fausto; Lippi, Francesco; Zanco, Giovanni.
Afiliación
  • Calvia A; Dipartimento di Economia e Finanza, LUISS University, Viale Romania 32, 00197 Rome, Italy.
  • Gozzi F; Dipartimento di Economia e Finanza, LUISS University, Viale Romania 32, 00197 Rome, Italy.
  • Lippi F; Dipartimento di Economia e Finanza, LUISS University, Viale Romania 32, 00197 Rome, Italy.
  • Zanco G; Einaudi Institute for Economics and Finance, Via Sallustiana 62, 00187 Rome, Italy.
Econ Theory ; : 1-28, 2023 Apr 15.
Article en En | MEDLINE | ID: mdl-37360773
A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Econ Theory Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Econ Theory Año: 2023 Tipo del documento: Article País de afiliación: Italia