Your browser doesn't support javascript.
loading
Metabolic interaction models recapitulate leaf microbiota ecology.
Schäfer, Martin; Pacheco, Alan R; Künzler, Rahel; Bortfeld-Miller, Miriam; Field, Christopher M; Vayena, Evangelia; Hatzimanikatis, Vassily; Vorholt, Julia A.
Afiliación
  • Schäfer M; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
  • Pacheco AR; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
  • Künzler R; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
  • Bortfeld-Miller M; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
  • Field CM; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
  • Vayena E; Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
  • Hatzimanikatis V; Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
  • Vorholt JA; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
Science ; 381(6653): eadf5121, 2023 07 07.
Article en En | MEDLINE | ID: mdl-37410834
Resource allocation affects the structure of microbiomes, including those associated with living hosts. Understanding the degree to which this dependency determines interspecies interactions may advance efforts to control host-microbiome relationships. We combined synthetic community experiments with computational models to predict interaction outcomes between plant-associated bacteria. We mapped the metabolic capabilities of 224 leaf isolates from Arabidopsis thaliana by assessing the growth of each strain on 45 environmentally relevant carbon sources in vitro. We used these data to build curated genome-scale metabolic models for all strains, which we combined to simulate >17,500 interactions. The models recapitulated outcomes observed in planta with >89% accuracy, highlighting the role of carbon utilization and the contributions of niche partitioning and cross-feeding in the assembly of leaf microbiomes.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bacterias / Carbono / Arabidopsis / Hojas de la Planta / Microbiota Tipo de estudio: Prognostic_studies Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bacterias / Carbono / Arabidopsis / Hojas de la Planta / Microbiota Tipo de estudio: Prognostic_studies Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Suiza