Your browser doesn't support javascript.
loading
Molecular rearrangement of bicyclic peroxy radicals is a key route to aerosol from aromatics.
Iyer, Siddharth; Kumar, Avinash; Savolainen, Anni; Barua, Shawon; Daub, Christopher; Pichelstorfer, Lukas; Roldin, Pontus; Garmash, Olga; Seal, Prasenjit; Kurtén, Theo; Rissanen, Matti.
Afiliación
  • Iyer S; Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland. siddharth.iyer@tuni.fi.
  • Kumar A; Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland.
  • Savolainen A; Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland.
  • Barua S; Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland.
  • Daub C; Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland.
  • Pichelstorfer L; Pi-Numerics, 5202, Neumarkt am Wallersee, Austria.
  • Roldin P; Department of Physics, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden.
  • Garmash O; Swedish Environmental Research Institute IVL, SE-211 19, Malmö, Sweden.
  • Seal P; Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland.
  • Kurtén T; Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA.
  • Rissanen M; Aerosol Physics Laboratory, Tampere University, FI-33101, Tampere, Finland.
Nat Commun ; 14(1): 4984, 2023 Aug 17.
Article en En | MEDLINE | ID: mdl-37591852
ABSTRACT
The oxidation of aromatics contributes significantly to the formation of atmospheric aerosol. Using toluene as an example, we demonstrate the existence of a molecular rearrangement channel in the oxidation mechanism. Based on both flow reactor experiments and quantum chemical calculations, we show that the bicyclic peroxy radicals (BPRs) formed in OH-initiated aromatic oxidation are much less stable than previously thought, and in the case of the toluene derived ipso-BPRs, lead to aerosol-forming low-volatility products with up to 9 oxygen atoms on sub-second timescales. Similar results are predicted for ipso-BPRs formed from many other aromatic compounds. This reaction class is likely a key route for atmospheric aerosol formation, and including the molecular rearrangement of BPRs may be vital for accurate chemical modeling of the atmosphere.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Finlandia

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Finlandia