Your browser doesn't support javascript.
loading
A topic modeling approach reveals the dynamic T cell composition of peripheral blood during cancer immunotherapy.
Peng, Xiyu; Lee, Jasme; Adamow, Matthew; Maher, Colleen; Postow, Michael A; Callahan, Margaret K; Panageas, Katherine S; Shen, Ronglai.
Afiliación
  • Peng X; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Lee J; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Adamow M; Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Maher C; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.
  • Postow MA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.
  • Callahan MK; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Panageas KS; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  • Shen R; Weill Cornell Medical College, New York, NY 10065, USA.
Cell Rep Methods ; 3(8): 100546, 2023 08 28.
Article en En | MEDLINE | ID: mdl-37671017
We present TopicFlow, a computational framework for flow cytometry data analysis of patient blood samples for the identification of functional and dynamic topics in circulating T cell population. This framework applies a Latent Dirichlet Allocation (LDA) model, adapting the concept of topic modeling in text mining to flow cytometry. To demonstrate the utility of our method, we conducted an analysis of ∼17 million T cells collected from 138 peripheral blood samples in 51 patients with melanoma undergoing treatment with immune checkpoint inhibitors (ICIs). Our study highlights three latent dynamic topics identified by LDA: a T cell exhaustion topic that independently recapitulates the previously identified LAG-3+ immunotype associated with ICI resistance, a naive topic and its association with immune-related toxicity, and a T cell activation topic that emerges upon ICI treatment. Our approach can be broadly applied to mine high-parameter flow cytometry data for insights into mechanisms of treatment response and toxicity.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Linfocitos T / Neoplasias Límite: Humans Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Linfocitos T / Neoplasias Límite: Humans Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos