Your browser doesn't support javascript.
loading
Phase Interface Regulating on Amorphous/Crystalline Bismuth Catalyst for Boosted Electrocatalytic CO2 Reduction to Formate.
Qin, Chenchen; Xu, Li; Zhang, Jian; Wang, Jun; He, Jiaxin; Liu, Daomeng; Yang, Jia; Xiao, Juan-Ding; Chen, Xifan; Li, Hong-Bao; Yang, Zhengkun; Wang, Junzhong.
Afiliación
  • Qin C; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Xu L; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Zhang J; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Wang J; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • He J; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Liu D; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Yang J; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Xiao JD; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Chen X; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Li HB; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Yang Z; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
  • Wang J; Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
ACS Appl Mater Interfaces ; 15(40): 47016-47024, 2023 Oct 11.
Article en En | MEDLINE | ID: mdl-37768597

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China