Hyaluronan synthases; mechanisms, myths, & mysteries of three types of unique bifunctional glycosyltransferases.
Glycobiology
; 33(12): 1117-1127, 2023 Dec 30.
Article
en En
| MEDLINE
| ID: mdl-37769351
Hyaluronan (HA), the essential [-3-GlcNAc-1-ß-4-GlcA-1-ß-]n matrix polysaccharide in vertebrates and molecular camouflage coating in select pathogens, is polymerized by "HA synthase" (HAS) enzymes. The first HAS identified three decades ago opened the window for new insights and biotechnological tools. This review discusses current understanding of HA biosynthesis, its biotechnological utility, and addresses some misconceptions in the literature. HASs are fascinating enzymes that polymerize two different UDP-activated sugars via different glycosidic linkages. Therefore, these catalysts were the first examples to break the "one enzyme/one sugar transferred" dogma. Three distinct types of these bifunctional glycosyltransferases (GTs) with disparate architectures and reaction modes are known. Based on biochemical and structural work, we present an updated classification system. Class I membrane-integrated HASs employ a processive chain elongation mechanism and secrete HA across the plasma membrane. This complex operation is accomplished by functionally integrating a cytosolic catalytic domain with a channel-forming transmembrane region. Class I enzymes, containing a single GT family-2 (GT-2) module that adds both monosaccharide units to the nascent chain, are further subdivided into two groups that construct the polymer with opposite molecular directionalities: Class I-R and I-NR elongate the HA polysaccharide at either the reducing or the non-reducing end, respectively. In contrast, Class II HASs are membrane-associated peripheral synthases with a non-processive, non-reducing end elongation mechanism using two independent GT-2 modules (one for each type of monosaccharide) and require a separate secretion system for HA export. We discuss recent mechanistic insights into HA biosynthesis that promise biotechnological benefits and exciting engineering approaches.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Glicosiltransferasas
/
Glucuronosiltransferasa
Límite:
Animals
Idioma:
En
Revista:
Glycobiology
Asunto de la revista:
BIOQUIMICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos