Your browser doesn't support javascript.
loading
A platform for far-infrared spectroscopy of quantum materials at millikelvin temperatures.
Onyszczak, Michael; Uzan-Narovlansky, Ayelet J; Tang, Yue; Wang, Pengjie; Jia, Yanyu; Yu, Guo; Song, Tiancheng; Singha, Ratnadwip; Khoury, Jason F; Schoop, Leslie M; Wu, Sanfeng.
Afiliación
  • Onyszczak M; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
  • Uzan-Narovlansky AJ; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
  • Tang Y; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
  • Wang P; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
  • Jia Y; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
  • Yu G; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
  • Song T; Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.
  • Singha R; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
  • Khoury JF; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
  • Schoop LM; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
  • Wu S; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article en En | MEDLINE | ID: mdl-37823766
ABSTRACT
Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution refrigerator. The instrument is capable of measuring both bulk crystals and micrometer-sized two-dimensional van der Waals materials and devices. We demonstrate its performance by implementing photocurrent-based Fourier transform infrared spectroscopy on a monolayer WTe2 device and a multilayer 1T-TaS2 crystal, with a spectral range available from the near-infrared to the terahertz regime and in magnetic fields up to 5 T. In the far-infrared regime, we achieve spectroscopic measurements at a base temperature as low as ∼43 mK and a sample electron temperature of ∼450 mK. Possible experiments and potential future upgrades of this versatile instrumental platform are envisioned.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos