Your browser doesn't support javascript.
loading
Automated neuron tracking inside moving and deforming C. elegans using deep learning and targeted augmentation.
Park, Core Francisco; Barzegar-Keshteli, Mahsa; Korchagina, Kseniia; Delrocq, Ariane; Susoy, Vladislav; Jones, Corinne L; Samuel, Aravinthan D T; Rahi, Sahand Jamal.
Afiliación
  • Park CF; Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA, USA.
  • Barzegar-Keshteli M; Laboratory of the Physics of Biological Systems, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Korchagina K; Laboratory of the Physics of Biological Systems, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Delrocq A; Laboratory of the Physics of Biological Systems, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Susoy V; Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA, USA.
  • Jones CL; Swiss Data Science Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Samuel ADT; Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA, USA.
  • Rahi SJ; Laboratory of the Physics of Biological Systems, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. sahand.rahi@epfl.ch.
Nat Methods ; 21(1): 142-149, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38052988
ABSTRACT
Reading out neuronal activity from three-dimensional (3D) functional imaging requires segmenting and tracking individual neurons. This is challenging in behaving animals if the brain moves and deforms. The traditional approach is to train a convolutional neural network with ground-truth (GT) annotations of images representing different brain postures. For 3D images, this is very labor intensive. We introduce 'targeted augmentation', a method to automatically synthesize artificial annotations from a few manual annotations. Our method ('Targettrack') learns the internal deformations of the brain to synthesize annotations for new postures by deforming GT annotations. This reduces the need for manual annotation and proofreading. A graphical user interface allows the application of the method end-to-end. We demonstrate Targettrack on recordings where neurons are labeled as key points or 3D volumes. Analyzing freely moving animals exposed to odor pulses, we uncover rich patterns in interneuron dynamics, including switching neuronal entrainment on and off.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo Límite: Animals Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo Límite: Animals Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos