CoRegNet: unraveling gene co-regulation networks from public RNA-Seq repositories using a beta-binomial statistical model.
Brief Bioinform
; 25(1)2023 11 22.
Article
en En
| MEDLINE
| ID: mdl-38113079
ABSTRACT
Millions of RNA sequencing samples have been deposited into public databases, providing a rich resource for biological research. These datasets encompass tens of thousands of experiments and offer comprehensive insights into human cellular regulation. However, a major challenge is how to integrate these experiments that acquired at different conditions. We propose a new statistical tool based on beta-binomial distributions that can construct robust gene co-regulation network (CoRegNet) across tens of thousands of experiments. Our analysis of over 12 000 experiments involving human tissues and cells shows that CoRegNet significantly outperforms existing gene co-expression-based methods. Although the majority of the genes are linearly co-regulated, we did discover an interesting set of genes that are non-linearly co-regulated; half of the time they change in the same direction and the other half they change in the opposite direction. Additionally, we identified a set of gene pairs that follows the Simpson's paradox. By utilizing public domain data, CoRegNet offers a powerful approach for identifying functionally related gene pairs, thereby revealing new biological insights.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Modelos Estadísticos
/
Redes Reguladoras de Genes
Límite:
Humans
Idioma:
En
Revista:
Brief Bioinform
Asunto de la revista:
BIOLOGIA
/
INFORMATICA MEDICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos