Your browser doesn't support javascript.
loading
Conversion of Photoluminescence Blinking Types in Single Colloidal Quantum Dots.
Yang, Changgang; Li, Yang; Hou, Xiaoqi; Zhang, Mi; Zhang, Guofeng; Li, Bin; Guo, Wenli; Han, Xue; Bai, Xiuqing; Li, Jialu; Chen, Ruiyun; Qin, Chengbing; Hu, Jianyong; Xiao, Liantuan; Jia, Suotang.
Afiliación
  • Yang C; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Li Y; School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
  • Hou X; Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China.
  • Zhang M; School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
  • Zhang G; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Li B; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Guo W; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Han X; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Bai X; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Li J; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Chen R; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Qin C; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Hu J; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Xiao L; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
  • Jia S; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
Small ; 20(23): e2309134, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38150666
ABSTRACT
Almost all colloidal quantum dots (QDs) exhibit undesired photoluminescence (PL) blinking, which poses a significant obstacle to their use in numerous luminescence applications. An in-depth study of the blinking behavior, along with the associated mechanisms, can provide critical opportunities for fabricating high-quality QDs for diverse applications. Here the blinking of a large series of colloidal QDs is investigated with different surface ligands, particle sizes, shell thicknesses, and compositions. It is found that the blinking behavior of single alloyed CdSe/ZnS QDs with a shell thickness of up to 2 nm undergoes an irreversible conversion from Auger-blinking to band-edge carrier blinking (BC-blinking). Contrastingly, single perovskite QDs with particle sizes smaller than their Bohr diameters exhibit reversible conversion between BC-blinking and more pronounced Auger-blinking. Changes in the effective trapping sites under different excitation conditions are found to be responsible for the blinking type conversions. Additionally, changes in shell thickness and particle size of QDs have a significant effect on the blinking type conversions due to altered wavefunction overlap between excitons and effective trapping sites. This study elucidates the discrepancies in the blinking behavior of various QD samples observed in previous reports and provides deeper understanding of the mechanisms underlying diverse types of blinking.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China