Your browser doesn't support javascript.
loading
Boosting Electrochemical Nitrogen Fixation via Regulating Surface Electronic Structure by CeO2 Hybridization.
Fang, Bin; Wang, Xiao; Zhang, Shuaishuai; Zhang, Lingling; Zhang, Rui; Wang, Ke; Song, Shuyan; Zhang, Hongjie.
Afiliación
  • Fang B; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
  • Wang X; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
  • Zhang S; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
  • Zhang L; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
  • Zhang R; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
  • Wang K; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
  • Song S; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
  • Zhang H; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Small ; 20(25): e2310268, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38195818
ABSTRACT
Electrocatalytic nitrogen reduction reaction (NRR) paves a sustainable way to produce NH3 but suffering from the relatively low NH3 yield and poor selectivity. High-performance NRR catalysts and a deep insight into the structure-performance relationship are higher desired. Herein, a molten-salt approach is developed to synthesize tiny CeO2 nanoparticles anchored by ultra-thin MoN nanosheets as advanced catalysts for NRR. Specifically, a considerably high NH3 yield rate of 27.5 µg h-1 mg-1 with 17.2% Faradaic efficiency (FE) can be achieved at -0.3 V vs (RHE) under ambient conditions. Experimental and density functional theory (DFT) calculations further point out that the incorporation of MoN with CeO2 can promotes the enlargement of the electron deficient area of nitrogen vacancy site. The enlarged electron deficient area contributes to the accommodation of lone pair electrons of N2, which dramatically improves the N2 adsorption/activation and the key intermediates (*NNH and *NH3) generation, thus boosting the NRR performance.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China