Self-Supervised Learning Improves Accuracy and Data Efficiency for IMU-Based Ground Reaction Force Estimation.
bioRxiv
; 2024 Jan 25.
Article
en En
| MEDLINE
| ID: mdl-38328126
ABSTRACT
Objective:
Recent deep learning techniques hold promise to enable IMU-driven kinetic assessment; however, they require large extents of ground reaction force (GRF) data to serve as labels for supervised model training. We thus propose using existing self-supervised learning (SSL) techniques to leverage large IMU datasets to pre-train deep learning models, which can improve the accuracy and data efficiency of IMU-based GRF estimation.Methods:
We performed SSL by masking a random portion of the input IMU data and training a transformer model to reconstruct the masked portion. We systematically compared a series of masking ratios across three pre-training datasets that included real IMU data, synthetic IMU data, or a combination of the two. Finally, we built models that used pre-training and labeled data to estimate GRF during three prediction tasks overground walking, treadmill walking, and drop landing.Results:
When using the same amount of labeled data, SSL pre-training significantly improved the accuracy of 3-axis GRF estimation during walking compared to baseline models trained by conventional supervised learning. Fine-tuning SSL model with 1-10% of walking data yielded comparable accuracy to training baseline model with 100% of walking data. The optimal masking ratio for SSL is 6.25-12.5%.Conclusion:
SSL leveraged large real and synthetic IMU datasets to increase the accuracy and data efficiency of deep-learning-based GRF estimation, reducing the need for labeled data.Significance:
This work, with its open-source code and models, may unlock broader use cases of IMU-driven kinetic assessment by mitigating the scarcity of GRF measurements in practical applications.
Texto completo:
1
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
BioRxiv
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos