Your browser doesn't support javascript.
loading
Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer.
Li, Xiaofang; Wang, Xiaofei; Wu, Zhimin; Zhang, Kai; Li, Rui; Song, Yuzhi; Fan, Jianzhong; Wang, Chuan-Kui; Lin, Lili.
Afiliación
  • Li X; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Wang X; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Wu Z; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Zhang K; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Li R; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Song Y; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Fan J; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Wang CK; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
  • Lin L; Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. ckwang@sdnu.edu.cn.
Phys Chem Chem Phys ; 26(9): 7706-7717, 2024 Feb 28.
Article en En | MEDLINE | ID: mdl-38372336
ABSTRACT
Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (ΔEST) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules are theoretically designed by changing the different substitution positions of the donors and acceptors, and systematically investigated based on the first-principles calculations and excited-state dynamics study. It is found that the emission wavelengths of v-shaped molecules with intramolecular TSCT are larger than those of the molecules without TSCT. Therefore, the intramolecular TSCT can induce the red-shift of the emission and realize the deep-red/near-infrared emission. Besides intramolecular TSCT can simultaneously increase the SOC as well as the oscillator strength and reduce the ΔEST. In addition, PXZ or PTZ can also favor the realization of smaller ΔEST and red-shift emission. Our calculations suggest that intramolecular TSCT and suitable donors (-PXZ or -PTZ) are an effective strategy for the design of efficient deep red/near-infrared TADF emitters.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China