Your browser doesn't support javascript.
loading
Diffractive optical computing in free space.
Hu, Jingtian; Mengu, Deniz; Tzarouchis, Dimitrios C; Edwards, Brian; Engheta, Nader; Ozcan, Aydogan.
Afiliación
  • Hu J; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Mengu D; Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Tzarouchis DC; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
  • Edwards B; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Engheta N; Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
  • Ozcan A; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
Nat Commun ; 15(1): 1525, 2024 Feb 20.
Article en En | MEDLINE | ID: mdl-38378715
ABSTRACT
Structured optical materials create new computing paradigms using photons, with transformative impact on various fields, including machine learning, computer vision, imaging, telecommunications, and sensing. This Perspective sheds light on the potential of free-space optical systems based on engineered surfaces for advancing optical computing. Manipulating light in unprecedented ways, emerging structured surfaces enable all-optical implementation of various mathematical functions and machine learning tasks. Diffractive networks, in particular, bring deep-learning principles into the design and operation of free-space optical systems to create new functionalities. Metasurfaces consisting of deeply subwavelength units are achieving exotic optical responses that provide independent control over different properties of light and can bring major advances in computational throughput and data-transfer bandwidth of free-space optical processors. Unlike integrated photonics-based optoelectronic systems that demand preprocessed inputs, free-space optical processors have direct access to all the optical degrees of freedom that carry information about an input scene/object without needing digital recovery or preprocessing of information. To realize the full potential of free-space optical computing architectures, diffractive surfaces and metasurfaces need to advance symbiotically and co-evolve in their designs, 3D fabrication/integration, cascadability, and computing accuracy to serve the needs of next-generation machine vision, computational imaging, mathematical computing, and telecommunication technologies.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos