Your browser doesn't support javascript.
loading
Dynamic Hyperspectral Holography Enabled by Inverse-Designed Metasurfaces with Oblique Helicoidal Cholesterics.
Kim, Joohoon; Im, Jun-Hyung; So, Sunae; Choi, Yeongseon; Kang, Hyunjung; Lim, Bogyu; Lee, Minjae; Kim, Young-Ki; Rho, Junsuk.
Afiliación
  • Kim J; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
  • Im JH; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
  • So S; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
  • Choi Y; Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
  • Kang H; Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea.
  • Lim B; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
  • Lee M; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
  • Kim YK; Department of Engineering Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
  • Rho J; Department of Chemistry, Kunsan National University, Gunsan, 54150, Republic of Korea.
Adv Mater ; 36(24): e2311785, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38456592
ABSTRACT
Metasurfaces are flat arrays of nanostructures that allow exquisite control of phase and amplitude of incident light. Although metasurfaces offer new active element for both fundamental science and applications, the challenge still remains to overcome their low information capacity and passive nature. Here, by integrating an inverse-designed-metasurface with oblique helicoidal cholesteric liquid crystal (ChOH), simultaneous spatial and spectral tunable metasurfaces with a high information capacity for dynamic hyperspectral holography, are demonstrated. The inverse design facilitates a single-phase map encoding of ten independent holographic images at different wavelengths. ChOH provides precise spectral modulation with narrow bandwidth and wide tunable regime in response to programmed stimuli, thus enabling dynamic switching of the multicolor holography. The results provide simple and generalizable principles for the rational design of interactive metasurfaces that will find numerous applications, including security platform.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article