Your browser doesn't support javascript.
loading
Controlled construction of 2D hierarchical core-shell ZnO/MnO2 nanosheets on Nitinol fiber with enhanced adsorption performance for selective solid-phase microextraction of trace polycyclic aromatic hydrocarbons in water samples.
Zhou, Hua; Li, Jiayu; Li, Huirong; Liu, Haixia; Wang, Xuemei; Du, Xinzhen.
Afiliación
  • Zhou H; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
  • Li J; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
  • Li H; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
  • Liu H; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
  • Wang X; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
  • Du X; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China. Electronic address: duxz@nwnu.edu.cn.
Anal Chim Acta ; 1298: 342402, 2024 Apr 15.
Article en En | MEDLINE | ID: mdl-38462331
ABSTRACT

BACKGROUND:

Polycyclic aromatic hydrocarbons (PAHs) are an important class of potentially toxic persistent organic pollutants in environmental water. Their concentrations are usually too low to allow for direct determination with analytical instruments, and the preconcentration is required prior to instrumental analysis. Solid phase microextraction (SPME) is considered as a high-performance green sample preparation technique for volatile and non-volatile organic compounds due to its high enrichment factor. In fact, the nature of SPME coatings governs the adsorption performance. Therefore, more efforts have devoted to the controlled construction of novel long-life SPME fibers with enhanced adsorption performance and improved adsorption selectivity.

RESULTS:

2D hierarchical core-shell ZnO/MnO2 nanosheets (NSs) were constructed on a Nitinol (NiTi) fiber substrate by layer-by-layer assembly for enhanced and selective SPME of PAHs. Firstly, hexagonal ZnO NSs were electrodeposited on the NiTi substrate. Subsequently smaller secondary MnO2 NSs were uniformly grown on the surface of ZnO NSs by a facile hydrothermal oxidation process. ZnO NSs were well protected by the chemically stable MnO2 shell, making the coating highly durable and efficient for SPME application. Meanwhile, the ZnO/MnO2 NSs coating demonstrated superior adsorption performance for PAHs. After the optimization of SPME conditions, the proposed SPME-HPLC-UV method exhibited good analytical performance for preconcentrating and determining trace PAHs with wide linear ranges (0.03-200 µg L-1) and low LODs (0.005-0.112 µg L-1) as well as good repeatability (1.4%-6.9%) and fiber-to-fiber reproducibility (5.3%-7.1%). Moreover, the proposed method showed good precision and recovery in the preconcentration and determination of target PAHs in real water samples.

SIGNIFICANCE:

As compared with representative commercially available fibers, the NiTi@ZnO/MnO2 NSs fiber showed enhanced adsorption efficiency and improved adsorption selectivity for PAHs. The constructed fiber can be used as an alternative to commercial fibers for the adsorption and preconcentration of target PAHs in the environmental water samples. Moreover, the preparation strategy is expected to provide new insights into the precisely controlled construction of the efficient and stable core-shell bimetallic oxide nanostructures on the superielastic NiTi-based fibers.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Anal Chim Acta Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Anal Chim Acta Año: 2024 Tipo del documento: Article País de afiliación: China