Your browser doesn't support javascript.
loading
Engineering a PtCu Alloy to Improve N2 Selectivity of NH3-SCO over the Pt/SSZ-13 Catalyst.
Yao, Pan; Li, Jiayi; Pei, Mingming; Liu, Fudong; Xu, Haidi; Chen, Yaoqiang.
Afiliación
  • Yao P; Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China.
  • Li J; Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), Nano Science Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States.
  • Pei M; Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China.
  • Liu F; Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), Nano Science Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States.
  • Xu H; Sichuan Provincial Environmental Protection Environmental Catalytic Materials Engineering Technology Center, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
  • Chen Y; Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), Nano Science Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States.
ACS Appl Mater Interfaces ; 16(12): 14694-14703, 2024 Mar 27.
Article en En | MEDLINE | ID: mdl-38477616
ABSTRACT
Improving the N2 selectivity is always a great challenge for the selective catalytic oxidation of ammonia (NH3-SCO) over noble-metal-based (especially Pt) catalysts. In this work, Cu as an efficient promoter was introduced into the Pt/SSZ-13 catalyst to significantly improve the N2 selectivity of the NH3-SCO reaction. A PtCu alloy was formed in the PtCu/SSZ-13 catalyst, as confirmed by X-ray diffraction, transmission electron microscopy, energy dispersive spectrometry mapping, and X-ray absorption spectroscopy results. As indicated by the X-ray photoelectron spectroscopy analysis, the Pt species in the alloyed PtCu nanoparticle was mainly present in the electron-rich state on PtCu/SSZ-13, while the electron-deficient Cu and isolated Cu2+ species were both present on the surface of PtCu/SSZ-13. Due to such a unique alloyed structure with an altered oxidation state, the N2 selectivity of NH3-SCO on the PtCu/SSZ-13 catalyst was remarkably improved, while the NH3-SCO activity was kept comparable to that on Pt/SSZ-13. The reaction path was changed from the NH mechanism on Pt/SSZ-13 to both NH and internal selective catalytic reduction mechanisms on the PtCu/SSZ-13 catalyst, which was considered the main reason for the enhanced N2 selectivity. This work provides a new route to synthesize efficient alloy catalysts for optimizing the N2 selectivity of NH3-SCO for NH3 slip control in diesel exhaust purification.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China