Your browser doesn't support javascript.
loading
Carbonate Ester-Based Electrolyte Enabling Rechargeable Zn Battery to Achieve High Voltage and High Zn Utilization.
Zhou, Kang; Liu, Gaopan; Yu, Xiaomeng; Li, Zhi; Wang, Yonggang.
Afiliación
  • Zhou K; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
  • Liu G; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
  • Yu X; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
  • Li Z; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
  • Wang Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
J Am Chem Soc ; 146(13): 9455-9464, 2024 Apr 03.
Article en En | MEDLINE | ID: mdl-38512342
ABSTRACT
Owing to the high H2O activity, the aqueous electrolyte in the Zn battery exhibits a narrow electrochemical window and inevitable hydrogen evolution reaction, limiting the anode utilization ratio and performance at high voltage. Carbonate ester, the well-developed electrolyte solvent in Li-ion batteries, exhibits aprotic properties and high anodic stability. However, its use in Zn metal batteries is limited due to the low solubility of Zn salts in carbonate esters. Herein, we propose a carbonate ester-based electrolyte (ECDMCEMC = 111 wt %), which contains a new Zn salt (Zn(BHFip)2) characterized by low cost, easy synthesis, and excellent aprotic solvent solubility. The BHFip- anion assists in forming Zn2+ conductive SEI on the anode and decomposes at high voltage to generate a protective CEI layer on the cathode. The Zn//Zn symmetric cell using such electrolyte achieves a remarkable Zn utilization ratio of 91% for 125 h, which has rarely been reported before. Furthermore, the Zn//LiMn2O4 full cell with an average operation voltage of 1.7 V demonstrates reliable cycling for 135 cycles with an N/P ratio of 11. In addition, the Zn//LiNi0.5Mn1.5O4 full cell exhibits a high discharge median voltage exceeding 2.2 V for 280 cycles, with the high voltage plateau (above 2 V) constituting 82% of the total capacity.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: China