Your browser doesn't support javascript.
loading
Spermidine attenuates monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting purine metabolism and polyamine synthesis-associated vascular remodeling.
Chen, Yu-Jing; Li, Han-Fei; Zhao, Fan-Rong; Yu, Miao; Pan, Si-Yu; Sun, Wen-Ze; Yin, Yan-Yan; Zhu, Tian-Tian.
Afiliación
  • Chen YJ; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 4530
  • Li HF; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 4530
  • Zhao FR; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 4530
  • Yu M; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 4530
  • Pan SY; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 4530
  • Sun WZ; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 4530
  • Yin YY; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xinxiang Key Laboratory of Cascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, 4530
  • Zhu TT; College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Department of Pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China; Xin
Int Immunopharmacol ; 132: 111946, 2024 May 10.
Article en En | MEDLINE | ID: mdl-38552292
ABSTRACT
Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 µM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Poliaminas / Arteria Pulmonar / Purinas / Espermidina / Monocrotalina / Ratas Sprague-Dawley / Células Endoteliales / Remodelación Vascular / Hipertensión Arterial Pulmonar Límite: Animals / Humans / Male Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Poliaminas / Arteria Pulmonar / Purinas / Espermidina / Monocrotalina / Ratas Sprague-Dawley / Células Endoteliales / Remodelación Vascular / Hipertensión Arterial Pulmonar Límite: Animals / Humans / Male Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article