Your browser doesn't support javascript.
loading
Best Practices for Experiments and Reports in Photocatalytic Methane Conversion.
Jiang, Yuheng; Li, Siyang; Fan, Yingying; Tang, Zhiyong.
Afiliación
  • Jiang Y; Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
  • Li S; Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.
  • Fan Y; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Tang Z; Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl ; 63(24): e202404658, 2024 Jun 10.
Article en En | MEDLINE | ID: mdl-38573117
ABSTRACT
Efficiently converting methane into valuable chemicals via photocatalysis under mild condition represents a sustainable route to energy storage and value-added manufacture. Despite continued interest in this area, the achievements have been overshadowed by the absence of standardized protocols for conducting photocatalytic methane oxidation experiments as well as evaluating the corresponding performance. In this review, we present a structured solution aimed at addressing these challenges. Firstly, we introduce the norms underlying reactor design and outline various configurations in the gas-solid and gas-solid-liquid reaction systems. This discussion helps choosing the suitable reactors for methane conversion experiments. Subsequently, we offer a comprehensive step-by-step protocol applicable to diverse methane-conversion reactions. Emphasizing meticulous verification and accurate quantification of the products, this protocol highlights the significance of mitigating contamination sources and selecting appropriate detection methods. Lastly, we propose the standardized performance metrics crucial for evaluating photocatalytic methane conversion. By defining these metrics, the community could obtain the consensus of assessing the performance across different studies. Moving forward, the future of photocatalytic methane conversion necessitates further refinement of stringent experimental standards and evaluation criteria. Moreover, development of scalable reactor is essential to facilitate the transition from laboratory proof-of-concept to potentially industrial production.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article