Your browser doesn't support javascript.
loading
Computational predictions of interfacial tension, surface tension, and surfactant adsorption isotherms.
Li, Jing; Amador, Carlos; Wilson, Mark R.
Afiliación
  • Li J; Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK. mark.wilson@durham.ac.uk.
  • Amador C; Newcastle Innovation Centre, Procter & Gamble Ltd, Newcastle Upon Tyne, NE12 9BZ, UK.
  • Wilson MR; Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK. mark.wilson@durham.ac.uk.
Phys Chem Chem Phys ; 26(15): 12107-12120, 2024 Apr 17.
Article en En | MEDLINE | ID: mdl-38587476
ABSTRACT
All-atom (AA) molecular dynamics (MD) simulations are employed to predict interfacial tensions (IFT) and surface tensions (ST) of both ionic and non-ionic surfactants. The general AMBER force field (GAFF) and variants are examined in terms of their performance in predicting accurate IFT/ST, γ, values for chosen water models, together with the hydration free energy, ΔGhyd, and density, ρ, predictions for organic bulk phases. A strong correlation is observed between the quality of ρ and γ predictions. Based on the results, the GAFF-LIPID force field, which provides improved ρ predictions is selected for simulating surfactant tail groups. Good γ predictions are obtained with GAFF/GAFF-LIPID parameters and the TIP3P water model for IFT simulations at a water-triolein interface, and for GAFF/GAFF-LIPID parameters together with the OPC4 water model for ST simulations at a water-vacuum interface. Using a combined molecular dynamics-molecular thermodynamics theory (MD-MTT) framework, a mole fraction of C12E6 molecule of 1.477 × 10-6 (from the experimental critical micelle concentration, CMC) gives a simulated surface excess concentration, ΓMAX, of 76 C12E6 molecules at a 36 nm2 water-vacuum surface (3.5 × 10-10 mol cm-2), which corresponds to a simulated ST of 35 mN m-1. The results compare favourably with an experimental ΓMAX of C12E6 of 3.7 × 10-10 mol cm-2 (80 surfactants for a 36 nm2 surface) and experimental ST of C12E6 of 32 mN m-1 at the CMC.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido