Your browser doesn't support javascript.
loading
Benzoselenadiazole-Functionalized H-Bonded Arylamide Foldamers: Solvent-Responsive Properties and Helix Self-Assembly Directed by Chalcogen Bonding in Solid State.
Liu, Chuan-Zhi; Zhang, Chi; Li, Chang-Gen; Chen, Hui-Bin; Yang, Wen; Li, Zhong-Yi; Hu, Zhi-Yuan; Xu, Liang; Zhai, Bin; Li, Zhan-Ting.
Afiliación
  • Liu CZ; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Zhang C; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Li CG; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Chen HB; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Yang W; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Li ZY; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Hu ZY; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Xu L; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 221 Beisi Road, Shihezi, 832003, China.
  • Zhai B; Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 55 Pingyuan middle Road, Shangqiu, Henan, 476000, China.
  • Li ZT; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
Chemistry ; 30(35): e202401150, 2024 Jun 20.
Article en En | MEDLINE | ID: mdl-38639722
ABSTRACT
In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se ⋅ ⋅ ⋅ N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se ⋅ ⋅ ⋅ N interactions beyond the crystalline state.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China