Your browser doesn't support javascript.
loading
Ethylene Glycol-Choline Chloride Based Hydrated Deep Eutectic Electrolytes Enabled High-Performance Zinc-Ion Battery.
Puttaswamy, Rangaswamy; Lee, Hyocheol; Bae, Hyo-Won; Youb Kim, Do; Kim, Dukjoon.
Afiliación
  • Puttaswamy R; School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
  • Lee H; School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
  • Bae HW; Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Youb Kim D; Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Kim D; School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
Small ; : e2400692, 2024 Apr 23.
Article en En | MEDLINE | ID: mdl-38651492
ABSTRACT
Aqueous rechargeable zinc-ion batteries (ARZIBs) are considered as an emerging energy storage technology owing to their low cost, inherent safety, and reasonable energy density. However, significant challenges associated with electrodes, and aqueous electrolytes restrict their rapid development. Herein, ethylene glycol-choline chloride (Eg-ChCl) based hydrated deep-eutectic electrolytes (HDEEs) are proposed for RZIBs. Also, a novel V10O24·nH2O@rGO composite is prepared and investigated in combination with HDEEs. The formulated HDEEs, particularly the composition of 1 ml of EG, 0.5 g of ChCl, 4 ml of H2O, and 2 M ZnTFS (1-0.5-4-2 HDEE), not only exhibit the lowest viscosity, highest Zn2+ conductivity (20.38 mS cm-1), and the highest zinc (Zn) transference number (t+ = 0.937), but also provide a wide electrochemical stability window (>3.2 V vs ZnǁZn2+) and enabledendrite-free Zn stripping/plating cycling over 1000 hours. The resulting ZnǁV10O24·nH2O@rGO cell with 1-0.5-4-2 HDEE manifests high reversible capacity of ≈365 mAh g-1 at 0.1 A g-1, high rate-performance (delivered ≈365/223 mAh g-1 at 0.1/10 mA g-1) and enhanced cycling performance (≈63.10% capacity retention in the 4000th cycle at 10 A g-1). Furthermore, 1-0.5-4-2 HDEE support feasible Zn-ion storage performance across a wide temperature range (0-80 °C) FInally, a ZnǁV10O24·nH2O@rGO pouch-cell prototype fabricated with 1-0.5-4-2 HDEE demonstrates good flexibility, safety, and durability.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article