Your browser doesn't support javascript.
loading
Giant Terahertz Birefringence in an Ultrathin Anisotropic Semimetal.
Sie, Edbert J; Othman, Mohamed A K; Nyby, Clara M; Pemmaraju, Das; Garcia, Christina A C; Wang, Yaxian; Guzelturk, Burak; Xia, Chenyi; Xiao, Jun; Poletayev, Andrey; Ofori-Okai, Benjamin K; Hoffmann, Matthias C; Park, Suji; Shen, Xiaozhe; Yang, Jie; Li, Renkai; Reid, Alexander H; Weathersby, Stephen; Muscher, Philipp; Finney, Nathan; Rhodes, Daniel; Balicas, Luis; Nanni, Emilio; Hone, James; Chueh, William; Devereaux, Thomas P; Narang, Prineha; Heinz, Tony F; Wang, Xijie; Lindenberg, Aaron M.
Afiliación
  • Sie EJ; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.
  • Othman MAK; Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Nyby CM; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Pemmaraju D; Department of Chemistry, Stanford University, Stanford, California 94305, United States.
  • Garcia CAC; Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Wang Y; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge Massachusetts 02138, United States.
  • Guzelturk B; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge Massachusetts 02138, United States.
  • Xia C; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States.
  • Xiao J; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
  • Poletayev A; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
  • Ofori-Okai BK; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
  • Hoffmann MC; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
  • Park S; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Shen X; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Yang J; Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Li R; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Reid AH; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Weathersby S; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Muscher P; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Finney N; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Rhodes D; Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Balicas L; Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States.
  • Nanni E; Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States.
  • Hone J; National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32310, United States.
  • Chueh W; SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Devereaux TP; Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States.
  • Narang P; Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Heinz TF; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
  • Wang X; Department of Applied Physics, Stanford University, Stanford, California 94305, United States.
  • Lindenberg AM; Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Article en En | MEDLINE | ID: mdl-38717626
ABSTRACT
Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos