Modular Access to Chiral Amines via Imine Reductase-Based Photoenzymatic Catalysis.
J Am Chem Soc
; 146(20): 14278-14286, 2024 May 22.
Article
en En
| MEDLINE
| ID: mdl-38727720
ABSTRACT
The development of catalysts serves as the cornerstone of innovation in synthesis, as exemplified by the recent discovery of photoenzymes. However, the repertoire of naturally occurring enzymes repurposed by direct light excitation to catalyze new-to-nature photobiotransformations is currently limited to flavoproteins and keto-reductases. Herein, we shed light on imine reductases (IREDs) that catalyze the remote C(sp3)-C(sp3) bond formation, providing a previously elusive radical hydroalkylation of enamides for accessing chiral amines (45 examples with up to 99% enantiomeric excess). Beyond their natural function in catalyzing two-electron reductive amination reactions, upon direct visible-light excitation or in synergy with a synthetic photoredox catalyst, IREDs are repurposed to tune the non-natural photoinduced single-electron radical processes. By conducting wet mechanistic experiments and computational simulations, we unravel how engineered IREDs direct radical intermediates toward the productive and enantioselective pathway. This work represents a promising paradigm for harnessing nature's catalysts for new-to-nature asymmetric transformations that remain challenging through traditional chemocatalytic methods.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Año:
2024
Tipo del documento:
Article
País de afiliación:
China