Your browser doesn't support javascript.
loading
Resting state electroencephalographic brain activity in neonates can predict age and is indicative of neurodevelopmental outcome.
Ansari, Amir; Pillay, Kirubin; Arasteh, Emad; Dereymaeker, Anneleen; Mellado, Gabriela Schmidt; Jansen, Katrien; Winkler, Anderson M; Naulaers, Gunnar; Bhatt, Aomesh; Huffel, Sabine Van; Hartley, Caroline; Vos, Maarten De; Slater, Rebeccah; Baxter, Luke.
Afiliación
  • Ansari A; Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.
  • Pillay K; Department of Paediatrics, University of Oxford, Oxford, UK.
  • Arasteh E; Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
  • Dereymaeker A; Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium.
  • Mellado GS; Department of Paediatrics, University of Oxford, Oxford, UK.
  • Jansen K; Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU Leuven, Leuven, Belgium.
  • Winkler AM; Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA.
  • Naulaers G; Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium.
  • Bhatt A; Department of Paediatrics, University of Oxford, Oxford, UK.
  • Huffel SV; Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.
  • Hartley C; Department of Paediatrics, University of Oxford, Oxford, UK.
  • Vos M; Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU Leuven, Leuven, Belgium.
  • Slater R; Department of Paediatrics, University of Oxford, Oxford, UK.
  • Baxter L; Department of Paediatrics, University of Oxford, Oxford, UK. Electronic address: luke.baxter@paediatrics.ox.ac.uk.
Clin Neurophysiol ; 163: 226-235, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38797002
ABSTRACT

OBJECTIVE:

Electroencephalography (EEG) can be used to estimate neonates' biological brain age. Discrepancies between postmenstrual age and brain age, termed the brain age gap, can potentially quantify maturational deviation. Existing brain age EEG models are not well suited to clinical cot-side use for estimating neonates' brain age gap due to their dependency on relatively large data and pre-processing requirements.

METHODS:

We trained a deep learning model on resting state EEG data from preterm neonates with normal neurodevelopmental Bayley Scale of Infant and Toddler Development (BSID) outcomes, using substantially reduced data requirements. We subsequently tested this model in two independent datasets from two clinical sites.

RESULTS:

In both test datasets, using only 20 min of resting-state EEG activity from a single channel, the model generated accurate age predictions mean absolute error = 1.03 weeks (p-value = 0.0001) and 0.98 weeks (p-value = 0.0001). In one test dataset, where 9-month follow-up BSID outcomes were available, the average neonatal brain age gap in the severe abnormal outcome group was significantly larger than that of the normal outcome group difference in mean brain age gap = 0.50 weeks (p-value = 0.04).

CONCLUSIONS:

These findings demonstrate that the deep learning model generalises to independent datasets from two clinical sites, and that the model's brain age gap magnitudes differ between neonates with normal and severe abnormal follow-up neurodevelopmental outcomes.

SIGNIFICANCE:

The magnitude of neonates' brain age gap, estimated using only 20 min of resting state EEG data from a single channel, can encode information of clinical neurodevelopmental value.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encéfalo / Electroencefalografía Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: Clin Neurophysiol Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encéfalo / Electroencefalografía Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: Clin Neurophysiol Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Bélgica