Your browser doesn't support javascript.
loading
Two new clades recovered at high temperatures provide novel phylogenetic and genomic insights into Candidatus Accumulibacter.
Xie, Xiaojing; Deng, Xuhan; Chen, Jinling; Chen, Liping; Yuan, Jing; Chen, Hang; Wei, Chaohai; Liu, Xianghui; Qiu, Guanglei.
Afiliación
  • Xie X; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Deng X; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Chen J; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Chen L; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Yuan J; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Chen H; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Wei C; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
  • Liu X; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
  • Qiu G; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
ISME Commun ; 4(1): ycae049, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38808122
ABSTRACT
Candidatus Accumulibacter, a key genus of polyphosphate-accumulating organisms, plays key roles in lab- and full-scale enhanced biological phosphorus removal (EBPR) systems. A total of 10 high-quality Ca. Accumulibacter genomes were recovered from EBPR systems operated at high temperatures, providing significantly updated phylogenetic and genomic insights into the Ca. Accumulibacter lineage. Among these genomes, clade IIF members SCELSE-3, SCELSE-4, and SCELSE-6 represent the to-date known genomes encoding a complete denitrification pathway, suggesting that Ca. Accumulibacter alone could achieve complete denitrification. Clade IIC members SSA1, SCUT-1, SCELCE-2, and SCELSE-8 lack the entire set of denitrifying genes, representing to-date known non-denitrifying Ca. Accumulibacter. A pan-genomic analysis with other Ca. Accumulibacter members suggested that all Ca. Accumulibacter likely has the potential to use dicarboxylic amino acids. Ca. Accumulibacter aalborgensis AALB and Ca. Accumulibacter affinis BAT3C720 seemed to be the only two members capable of using glucose for EBPR. A heat shock protein Hsp20 encoding gene was found exclusively in genomes recovered at high temperatures, which was absent in clades IA, IC, IG, IIA, IIB, IID, IIG, and II-I members. High transcription of this gene in clade IIC members SCUT-2 and SCUT-3 suggested its role in surviving high temperatures for Ca. Accumulibacter. Ambiguous clade identity was observed for newly recovered genomes (SCELSE-9 and SCELSE-10). Five machine learning models were developed using orthogroups as input features. Prediction results suggested that they belong to a new clade (IIK). The phylogeny of Ca. Accumulibacter was re-evaluated based on the laterally derived polyphosphokinase 2 gene, showing improved resolution in differentiating different clades.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ISME Commun Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ISME Commun Año: 2024 Tipo del documento: Article País de afiliación: China