Your browser doesn't support javascript.
loading
DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images.
Pramanik, Payel; Roy, Ayush; Cuevas, Erik; Perez-Cisneros, Marco; Sarkar, Ram.
Afiliación
  • Pramanik P; Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.
  • Roy A; Department of Electrical Engineering, Jadavpur University, Kolkata, India.
  • Cuevas E; Departamento de Electrónica, Universidad de Guadalajara, Guadalajara, Mexico.
  • Perez-Cisneros M; División de Tecnologías Para La Integración Ciber-Humana, Universidad de Guadalajara, Guadalajara, Mexico.
  • Sarkar R; Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.
PLoS One ; 19(5): e0303670, 2024.
Article en En | MEDLINE | ID: mdl-38820462
ABSTRACT
Breast cancer remains a critical global concern, underscoring the urgent need for early detection and accurate diagnosis to improve survival rates among women. Recent developments in deep learning have shown promising potential for computer-aided detection (CAD) systems to address this challenge. In this study, a novel segmentation method based on deep learning is designed to detect tumors in breast ultrasound images. Our proposed approach combines two powerful attention mechanisms the novel Positional Convolutional Block Attention Module (PCBAM) and Shifted Window Attention (SWA), integrated into a Residual U-Net model. The PCBAM enhances the Convolutional Block Attention Module (CBAM) by incorporating the Positional Attention Module (PAM), thereby improving the contextual information captured by CBAM and enhancing the model's ability to capture spatial relationships within local features. Additionally, we employ SWA within the bottleneck layer of the Residual U-Net to further enhance the model's performance. To evaluate our approach, we perform experiments using two widely used datasets of breast ultrasound images and the obtained results demonstrate its capability in accurately detecting tumors. Our approach achieves state-of-the-art performance with dice score of 74.23% and 78.58% on BUSI and UDIAT datasets, respectively in segmenting the breast tumor region, showcasing its potential to help with precise tumor detection. By leveraging the power of deep learning and integrating innovative attention mechanisms, our study contributes to the ongoing efforts to improve breast cancer detection and ultimately enhance women's survival rates. The source code of our work can be found here https//github.com/AyushRoy2001/DAUNet.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Ultrasonografía Mamaria / Aprendizaje Profundo Límite: Female / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Ultrasonografía Mamaria / Aprendizaje Profundo Límite: Female / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: India