Your browser doesn't support javascript.
loading
Molecular transport enhancement in pure metallic carbon nanotube porins.
Li, Yuhao; Li, Zhongwu; Misra, Rahul Prasanna; Liang, Chenxing; Gillen, Alice J; Zhao, Sidi; Abdullah, Jobaer; Laurence, Ted; Fagan, Jeffrey A; Aluru, Narayana; Blankschtein, Daniel; Noy, Aleksandr.
Afiliación
  • Li Y; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Li Z; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Misra RP; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Liang C; Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
  • Gillen AJ; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Zhao S; Vivani Medical Inc., Emeryville, CA, USA.
  • Abdullah J; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Laurence T; School of Engineering, University of California Merced, Merced, CA, USA.
  • Fagan JA; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Aluru N; School of Natural Sciences, University of California Merced, Merced, CA, USA.
  • Blankschtein D; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Noy A; Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
Nat Mater ; 23(8): 1123-1130, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38937586
ABSTRACT
Nanofluidic channels impose extreme confinement on water and ions, giving rise to unusual transport phenomena strongly dependent on the interactions at the channel-wall interface. Yet how the electronic properties of the nanofluidic channels influence transport efficiency remains largely unexplored. Here we measure transport through the inner pores of sub-1 nm metallic and semiconducting carbon nanotube porins. We find that water and proton transport are enhanced in metallic nanotubes over semiconducting nanotubes, whereas ion transport is largely insensitive to the nanotube bandgap value. Molecular simulations using polarizable force fields highlight the contributions of the anisotropic polarizability tensor of the carbon nanotubes to the ion-nanotube interactions and the water friction coefficient. We also describe the origin of the proton transport enhancement in metallic nanotubes using deep neural network molecular dynamics simulations. These results emphasize the complex role of the electronic properties of nanofluidic channels in modulating transport under extreme nanoscale confinement.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos