Your browser doesn't support javascript.
loading
Conflicting Sensory Information Sharpens the Neural Representations of Early Selective Visuospatial Attention.
Sookprao, Panchalee; Benjasupawan, Kanyarat; Phangwiwat, Tanagrit; Chatnuntawech, Itthi; Lertladaluck, Kanda; Gutchess, Angela; Chunharas, Chaipat; Itthipuripat, Sirawaj.
Afiliación
  • Sookprao P; Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
  • Benjasupawan K; Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.
  • Phangwiwat T; Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
  • Chatnuntawech I; SCG Digital Office, Bangkok 10800, Thailand.
  • Lertladaluck K; Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
  • Gutchess A; Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.
  • Chunharas C; Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
  • Itthipuripat S; Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
J Neurosci ; 44(33)2024 Aug 14.
Article en En | MEDLINE | ID: mdl-38955488
ABSTRACT
Adaptive behaviors require the ability to resolve conflicting information caused by the processing of incompatible sensory inputs. Prominent theories of attention have posited that early selective attention helps mitigate cognitive interference caused by conflicting sensory information by facilitating the processing of task-relevant sensory inputs and filtering out behaviorally irrelevant information. Surprisingly, many recent studies that investigated the role of early selective attention on conflict mitigation have failed to provide positive evidence. Here, we examined changes in the selectivity of early visuospatial attention in male and female human subjects performing an attention-cueing Eriksen flanker task, where they discriminated the shape of a visual target surrounded by congruent or incongruent distractors. We used the inverted encoding model to reconstruct spatial representations of visual selective attention from the topographical patterns of amplitude modulations in alpha band oscillations in scalp EEG (∼8-12 Hz). We found that the fidelity of the alpha-based spatial reconstruction was significantly higher in the incongruent compared with the congruent condition. Importantly, these conflict-related modulations in the reconstruction fidelity occurred at a much earlier time window than those of the lateralized posterior event-related potentials associated with target selection and distractor suppression processes, as well as conflict-related modulations in the frontocentral negative-going wave and midline-frontal theta oscillations (∼3-7 Hz), thought to track executive control functions. Taken together, our data suggest that conflict resolution is supported by the cascade of neural processes underlying early selective visuospatial attention and frontal executive functions that unfold over time.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Atención / Percepción Espacial / Percepción Visual Límite: Adult / Female / Humans / Male Idioma: En Revista: J Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Tailandia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Atención / Percepción Espacial / Percepción Visual Límite: Adult / Female / Humans / Male Idioma: En Revista: J Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Tailandia