Your browser doesn't support javascript.
loading
Dielectrophoretic bead-droplet reactor for solid-phase synthesis.
Padhy, Punnag; Zaman, Mohammad Asif; Jensen, Michael Anthony; Cheng, Yao-Te; Huang, Yogi; Wu, Mo; Galambos, Ludwig; Davis, Ronald Wayne; Hesselink, Lambertus.
Afiliación
  • Padhy P; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA. punnag@stanford.edu.
  • Zaman MA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Jensen MA; Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA. m.a.jensen@stanford.edu.
  • Cheng YT; Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA. m.a.jensen@stanford.edu.
  • Huang Y; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Wu M; Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Galambos L; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Davis RW; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Hesselink L; Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
Nat Commun ; 15(1): 6159, 2024 Jul 22.
Article en En | MEDLINE | ID: mdl-39039069
ABSTRACT
Solid-phase synthesis underpins many advances in synthetic and combinatorial chemistry, biology, and material science. The immobilization of a reacting species on the solid support makes interfacing of reagents an important challenge in this approach. In traditional synthesis columns, this leads to reaction errors that limit the product yield and necessitates excess consumption of the mobile reagent phase. Although droplet microfluidics can mitigate these problems, its adoption is fundamentally limited by the inability to controllably interface microbeads and reagent droplets. Here, we introduce Dielectrophoretic Bead-Droplet Reactor as a physical method to implement solid-phase synthesis on individual functionalized microbeads by encapsulating and ejecting them from microdroplets by tuning the supply voltage. Proof-of-concept demonstration of the enzymatic coupling of fluorescently labeled nucleotides onto the bead using this reactor yielded a 3.2-fold higher fidelity over columns through precise interfacing of individual microreactors and beads. Our work combines microparticle manipulation and droplet microfluidics to address a long-standing problem in solid-phase synthesis with potentially wide-ranging implications.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun / Nature communications Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun / Nature communications Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos