Your browser doesn't support javascript.
loading
Self-assembled high-entropy Prussian blue analogue nanosheets enabling efficient sodium storage.
Gu, Yunjiang; Lu, Yonglin; Dai, Pengfei; Cao, Xin; Zhou, Yiming; Tang, Yawen; Fang, Zhiwei; Wu, Ping.
Afiliación
  • Gu Y; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Lu Y; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Dai P; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Cao X; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Zhou Y; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Tang Y; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Fang Z; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States. Electronic address: zf20@rice.edu.
  • Wu P; Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China. Electronic address: zjuwuping@njnu.edu.cn.
J Colloid Interface Sci ; 677(Pt A): 307-313, 2024 Jul 27.
Article en En | MEDLINE | ID: mdl-39094491
ABSTRACT
High entropy material (HEM) has emerged as an appealing material platform for various applications, and specifically, the electrochemical performances of HEM could be further improved through self-assembled structure design. However, it remains a big challenge to construct such high-entropy self-assemblies primarily due to the compositional complexity. Herein, we propose a bottom-up directional freezing route to self-assemble high-entropy hydrosols into porous nanosheets. Taking Prussian blue analogue (PBA) as an example, the simultaneous coordination-substitution reactions yield stable high-entropy PBA hydrosols. During subsequent directional freezing process, the anisotropic growth of ice crystals could guide the two-dimensional confined assembly of colloidal nanoparticles, resulting in high-entropy PBA nanosheets (HE-PBA NSs). Thanks to the high-entropy and self-assembled structure design, the HE-PBA NSs manifests markedly enhanced sodium storage kinetics and performances in comparison with medium/low entropy nanosheets and high entropy nanoparticles.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article