Your browser doesn't support javascript.
loading
Temporal dissociation of COX-2-dependent arachidonic acid and 2-arachidonoylglycerol metabolism in RAW264.7 macrophages.
Aleem, Ansari M; Mitchener, Michelle M; Kingsley, Philip J; Rouzer, Carol A; Marnett, Lawrence J.
Afiliación
  • Aleem AM; A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Mitchener MM; A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Kingsley PJ; A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Rouzer CA; A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Marnett LJ; A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA. Electronic address: larry.marnett@vanderb
J Lipid Res ; 65(9): 100615, 2024 Aug 05.
Article en En | MEDLINE | ID: mdl-39098584
ABSTRACT
Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 180-204 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Lipid Res Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Lipid Res Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos