Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339756

ABSTRACT

Supervisory Control and Data Acquisition (SCADA) systems, which play a critical role in monitoring, managing, and controlling industrial processes, face flexibility, scalability, and management difficulties arising from traditional network structures. Software-defined networking (SDN) offers a new opportunity to overcome the challenges traditional SCADA networks face, based on the concept of separating the control and data plane. Although integrating the SDN architecture into SCADA systems offers many advantages, it cannot address security concerns against cyber-attacks such as a distributed denial of service (DDoS). The fact that SDN has centralized management and programmability features causes attackers to carry out attacks that specifically target the SDN controller and data plane. If DDoS attacks against the SDN-based SCADA network are not detected and precautions are not taken, they can cause chaos and have terrible consequences. By detecting a possible DDoS attack at an early stage, security measures that can reduce the impact of the attack can be taken immediately, and the likelihood of being a direct victim of the attack decreases. This study proposes a multi-stage learning model using a 1-dimensional convolutional neural network (1D-CNN) and decision tree-based classification to detect DDoS attacks in SDN-based SCADA systems effectively. A new dataset containing various attack scenarios on a specific experimental network topology was created to be used in the training and testing phases of this model. According to the experimental results of this study, the proposed model achieved a 97.8% accuracy rate in DDoS-attack detection. The proposed multi-stage learning model shows that high-performance results can be achieved in detecting DDoS attacks against SDN-based SCADA systems.

2.
Health Inf Sci Syst ; 12(1): 33, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38685986

ABSTRACT

White blood cells (WBC) play an effective role in the body's defense against parasites, viruses, and bacteria in the human body. Also, WBCs are categorized based on their morphological structures into various subgroups. The number of these WBC types in the blood of non-diseased and diseased people is different. Thus, the study of WBC classification is quite significant for medical diagnosis. Due to the widespread use of deep learning in medical image analysis in recent years, it has also been used in WBC classification. Moreover, the ConvMixer and Swin transformer models, recently introduced, have garnered significant success by attaining efficient long contextual characteristics. Based on this, a new multipath hybrid network is proposed for WBC classification by using ConvMixer and Swin transformer. This proposed model is called Swin Transformer and ConvMixer based Multipath mixer (SC-MP-Mixer). In the SC-MP-Mixer model, firstly, features with strong spatial details are extracted with the ConvMixer. Then Swin transformer effectively handle these features with self-attention mechanism. In addition, the ConvMixer and Swin transformer blocks consist of a multipath structure to obtain better patch representations in the SC-MP-Mixer. To test the performance of the SC-MP-Mixer, experiments were performed on three WBC datasets with 4 (BCCD), 8 (PBC) and 5 (Raabin) classes. The experimental studies resulted in an accuracy of 99.65% for PBC, 98.68% for Raabin, and 95.66% for BCCD. When compared with the studies in the literature and the state-of-the-art models, it was seen that the SC-MP-Mixer had more effective classification results.

3.
Health Inf Sci Syst ; 12(1): 32, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38685985

ABSTRACT

Gastrointestinal (GI) disorders, encompassing conditions like cancer and Crohn's disease, pose a significant threat to public health. Endoscopic examinations have become crucial for diagnosing and treating these disorders efficiently. However, the subjective nature of manual evaluations by gastroenterologists can lead to potential errors in disease classification. In addition, the difficulty of diagnosing diseased tissues in GI and the high similarity between classes made the subject a difficult area. Automated classification systems that use artificial intelligence to solve these problems have gained traction. Automatic detection of diseases in medical images greatly benefits in the diagnosis of diseases and reduces the time of disease detection. In this study, we suggested a new architecture to enable research on computer-assisted diagnosis and automated disease detection in GI diseases. This architecture, called Spatial-Attention ConvMixer (SAC), further developed the patch extraction technique used as the basis of the ConvMixer architecture with a spatial attention mechanism (SAM). The SAM enables the network to concentrate selectively on the most informative areas, assigning importance to each spatial location within the feature maps. We employ the Kvasir dataset to assess the accuracy of classifying GI illnesses using the SAC architecture. We compare our architecture's results with Vanilla ViT, Swin Transformer, ConvMixer, MLPMixer, ResNet50, and SqueezeNet models. Our SAC method gets 93.37% accuracy, while the other architectures get respectively 79.52%, 74.52%, 92.48%, 63.04%, 87.44%, and 85.59%. The proposed spatial attention block improves the accuracy of the ConvMixer architecture on the Kvasir, outperforming the state-of-the-art methods with an accuracy rate of 93.37%.

SELECTION OF CITATIONS
SEARCH DETAIL