Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Malar J ; 14: 242, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26063497

ABSTRACT

BACKGROUND: From 2008 to 2013, a prevention intervention against malaria based on indoor residual spraying (IRS) was implemented in Benin. From 2008 to 2012, Ficam M(®), a bendiocarb-containing product was used for house spraying, in association with pirimiphos methyl EC (Actellic EC) in 2013. This operation aimed to strengthen the effectiveness of treated nets so as to expedite the achievement of Millennium Development Goals (MDGs): the reduction of morbidity and mortality due to malaria by 75 % from 2000 to 2015. METHODS: Monitoring and evaluation (M&E) was implemented in order to evaluate the impact of IRS intervention on malaria transmission. Anopheles gambiae s.l. populations were sampled by human landing catch. In addition, window exit traps and pyrethrum spray catches were performed to assess exophagic behaviour of Anopheles vectors the main malaria vector in the treated areas. The residual activity of insecticide in the treated walls was also assessed using WHO bioassay test. RESULTS: The purpose of this project was to draw attention to new challenges and future prospects for the success of IRS in Benin. The main strength of the intervention was a large-scale operation in which more than 80 % of the houses were treated due to the strong adhesion of population. In addition, a significant reduction of the EIR in areas under IRS were observed. However, there were many challenges including the high cost of IRS implementation and the identification of suitable areas to implement IRS. This was because of the low and short residual effect of the insecticides recommended for IRS and the management strategy for vector resistance to insecticides. This indicated that challenges are accompanied by suggested solutions. For the cost of IRS to be accessible to states, then local organizations need to be created in partnership with the National Malaria Control Programme (NMCP) in order to ensure relevant planning and implementation of IRS. CONCLUSION: As an anticipatory measure against vector resistance, this paper proposes various methods, such as periodic IRS based on a combination of two or three insecticides of different classes used in rotation every two or three years.


Subject(s)
Anopheles , Insect Vectors , Insecticide Resistance , Insecticides , Malaria/prevention & control , Mosquito Control , Animals , Anopheles/physiology , Benin , Housing , Insect Vectors/physiology , Mosquito Control/economics , Organothiophosphorus Compounds , Phenylcarbamates , Population Dynamics
2.
Parasit Vectors ; 6(1): 319, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24499508

ABSTRACT

BACKGROUND: A dynamic study on the transmission of malaria was conducted in two areas (R⁺ area: Low resistance area; R⁺⁺⁺ area: High resistance area) in the department of Plateau in South Eastern Benin, where the population is protected by Long Lasting Insecticidal Nets (LLINs). The aim of this study was to determine if the resistance of malaria vectors to insecticides has an impact on their behavior and on the effectiveness of LLINs in the reduction of malaria transmission. METHODS: Populations of Anopheles gambiae s.l. were sampled monthly by human landing catch in the two areas to evaluate human biting rates (HBR). Collected mosquitoes were identified morphologically and female Anopheles mosquitoes were tested for the presence of Plasmodium falciparum antigen as assessed using ELISA. The entomological inoculation rate (EIR) was also calculated (EIR = HBR x sporozoitic index [S]). We estimated the parity rate by dissecting the females of An. gambiae. Finally, window catch and spray catch were conducted in order to assess the blood feeding rate and the exophily rate of vectors. RESULTS: After 6 months of tracking the mosquito's behavior in contact with the LLINs (Olyset) in R⁺⁺⁺ and R⁺ areas, the entomological indicators of the transmission of malaria (parity rate and sporozoitic index) were similar in the two areas. Also, An. gambiae populations showed the same susceptibility to P. falciparum in both R⁺ and R⁺⁺⁺ areas. The EIR and the exophily rate are higher in R⁺ area than in R⁺⁺⁺ area. But the blood-feeding rate is lower in R⁺ area comparing to R⁺⁺⁺. CONCLUSION: The highest entomological inoculation rate observed in R⁺ area is mostly due to the strong aggressive density of An. gambiae recorded in one of the study localities. On the other hand, the highest exophily rate and the low blood-feeding rate recorded in R⁺ area compared to R⁺⁺⁺ area are not due to the resistance status of An. gambiae, but due to the differences in distribution and availability of breeding sites for Anopheles mosquitoes between areas. However, this phenomenon is not related to the resistance status, but is related to the environment instead.


Subject(s)
Anopheles/drug effects , Anopheles/parasitology , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Plasmodium falciparum/isolation & purification , Pyrethrins/pharmacology , Animals , Antigens, Protozoan/analysis , Benin , Child, Preschool , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL