Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Med Phys ; 44(9): e174-e187, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28901616

ABSTRACT

PURPOSE: Exploiting the x-ray measurements obtained in different energy bins, spectral computed tomography (CT) has the ability to recover the 3-D description of a patient in a material basis. This may be achieved solving two subproblems, namely the material decomposition and the tomographic reconstruction problems. In this work, we address the material decomposition of spectral x-ray projection images, which is a nonlinear ill-posed problem. METHODS: Our main contribution is to introduce a material-dependent spatial regularization in the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton algorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung, adipose tissue, and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin photon counting detector. To evaluate the method performance of our algorithm, different scenarios are created by varying the number of incident photons, the concentration of the marker and the configuration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on the regularization parameter are also studied. RESULTS: We show that material decomposition is feasible with the proposed method and that it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise, and artifacts even for the best case scenario. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. Results were superior to those provided by ML-NM in terms of image quality and decomposition was 70 times faster. For the assessed experiments, material decomposition was possible with the proposed method when the number of incident photons was equal or larger than 105 and when the marker concentration was equal or larger than 0.03 g·cm-3 . CONCLUSIONS: The proposed method efficiently solves the nonlinear decomposition problem for spectral CT, which opens up new possibilities such as material-specific regularization in the projection domain and a parallelization framework, in which projections are solved in parallel.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Artifacts , Humans , Phantoms, Imaging , X-Rays
2.
J Biomed Opt ; 17(3): 036013, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22502571

ABSTRACT

Reconstruction algorithms for imaging fluorescence in near infrared ranges usually normalize fluorescence light with respect to excitation light. Using this approach, we investigated the influence of absorption and scattering heterogeneities on quantification accuracy when assuming a homogeneous model and explored possible reconstruction improvements by using a heterogeneous model. To do so, we created several computer-simulated phantoms: a homogeneous slab phantom (P1), slab phantoms including a region with a two- to six-fold increase in scattering (P2) and in absorption (P3), and an atlas-based mouse phantom that modeled different liver and lung scattering (P4). For P1, reconstruction with the wrong optical properties yielded quantification errors that increased almost linearly with the scattering coefficient while they were mostly negligible regarding the absorption coefficient. This observation agreed with the theoretical results. Taking the quantification of a homogeneous phantom as a reference, relative quantification errors obtained when wrongly assuming homogeneous media were in the range +41 to +94% (P2), 0.1 to -7% (P3), and -39 to +44% (P4). Using a heterogeneous model, the overall error ranged from -7 to 7%. In conclusion, this work demonstrates that assuming homogeneous media leads to noticeable quantification errors that can be improved by adopting heterogeneous models.


Subject(s)
Image Processing, Computer-Assisted/methods , Tomography, Optical/methods , Absorption , Algorithms , Animals , Computer Simulation , Diffusion , Finite Element Analysis , Mice , Phantoms, Imaging , Reproducibility of Results , Tomography, Optical/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL