Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(2): 179-194, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36634672

ABSTRACT

It has been 15 years since the advent of the genome-wide association study (GWAS) era. Here, we review how this experimental design has realized its promise by facilitating an impressive range of discoveries with remarkable impact on multiple fields, including population genetics, complex trait genetics, epidemiology, social science, and medicine. We predict that the emergence of large-scale biobanks will continue to expand to more diverse populations and capture more of the allele frequency spectrum through whole-genome sequencing, which will further improve our ability to investigate the causes and consequences of human genetic variation for complex traits and diseases.


Subject(s)
Genetics, Population , Genome-Wide Association Study , Humans , Gene Frequency , Multifactorial Inheritance , Polymorphism, Single Nucleotide
2.
Dev Psychopathol ; 35(1): 396-409, 2023 02.
Article in English | MEDLINE | ID: mdl-36914285

ABSTRACT

Many adolescents start using tobacco, alcohol, and cannabis. Genetic vulnerability, parent characteristics in young adolescence, and interaction (GxE) and correlation (rGE) between these factors could contribute to the development of substance use. Using prospective data from the TRacking Adolescent Individuals' Lives Survey (TRAILS; N = 1,645), we model latent parent characteristics in young adolescence to predict young adult substance use. Polygenic scores (PGS) are created based on genome-wide association studies (GWAS) for smoking, alcohol use, and cannabis use. Using structural equation modeling we model the direct, GxE, and rGE effects of parent factors and PGS on young adult smoking, alcohol use, and cannabis initiation. The PGS, parental involvement, parental substance use, and parent-child relationship quality predicted smoking. There was GxE such that the PGS amplified the effect of parental substance use on smoking. There was rGE between all parent factors and the smoking PGS. Alcohol use was not predicted by genetic or parent factors, nor by interplay. Cannabis initiation was predicted by the PGS and parental substance use, but there was no GxE or rGE. Genetic risk and parent factors are important predictors of substance use and show GxE and rGE in smoking. These findings can act as a starting point for identifying people at risk.


Subject(s)
Genome-Wide Association Study , Substance-Related Disorders , Young Adult , Humans , Adolescent , Adult , Prospective Studies , Risk Factors , Parents , Substance-Related Disorders/genetics
3.
Behav Brain Sci ; 46: e231, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37694992

ABSTRACT

Burt's argument relies on a motte-and-bailey fallacy. Burt aims to argue against the value of genetics for social science; instead she argues against certain interpretations of a specific kind of genetics tool, polygenic scores (PGSs). The limitations, previously identified by behavioural geneticists including ourselves, do not negate the value of PGSs, let alone genetics in general, for social science.


Subject(s)
Dissent and Disputes , Social Sciences , Female , Humans
4.
Br J Psychiatry ; 221(1): 377-385, 2022 07.
Article in English | MEDLINE | ID: mdl-35049464

ABSTRACT

BACKGROUND: Structural variation in subcortical brain regions has been linked to substance use, including the most commonly used substances nicotine and alcohol. Pre-existing differences in subcortical brain volume may affect smoking and alcohol use, but there is also evidence that smoking and alcohol use can lead to structural changes. AIMS: We assess the causal nature of the complex relationship of subcortical brain volume with smoking and alcohol use, using bi-directional Mendelian randomisation. METHOD: Mendelian randomisation uses genetic variants predictive of a certain 'exposure' as instrumental variables to test causal effects on an 'outcome'. Because of random assortment at meiosis, genetic variants should not be associated with confounders, allowing less biased causal inference. We used summary-level data of genome-wide association studies of subcortical brain volumes (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus; n = 50 290) and smoking and alcohol use (smoking initiation, n = 848 460; cigarettes per day, n = 216 590; smoking cessation, n = 378 249; alcoholic drinks per week, n = 630 154; alcohol dependence, n = 46 568). The main analysis, inverse-variance weighted regression, was verified by a wide range of sensitivity methods. RESULTS: There was strong evidence that liability to alcohol dependence decreased amygdala and hippocampal volume, and smoking more cigarettes per day decreased hippocampal volume. From subcortical brain volumes to substance use, there was no or weak evidence for causal effects. CONCLUSIONS: Our findings suggest that heavy alcohol use and smoking can causally reduce subcortical brain volume. This adds to accumulating evidence that alcohol and smoking affect the brain, and likely mental health, warranting more recognition in public health efforts.


Subject(s)
Alcoholism , Substance-Related Disorders , Alcoholism/epidemiology , Brain/diagnostic imaging , Genome-Wide Association Study , Humans , Smoking/adverse effects
5.
Behav Genet ; 52(4-5): 205-234, 2022 09.
Article in English | MEDLINE | ID: mdl-35790706

ABSTRACT

Natural selection has been documented in contemporary humans, but little is known about the mechanisms behind it. We test for natural selection through the association between 33 polygenic scores and fertility, across two generations, using data from UK Biobank (N = 409,629 British subjects with European ancestry). Consistently over time, polygenic scores that predict higher earnings, education and health also predict lower fertility. Selection effects are concentrated among lower SES groups, younger parents, people with more lifetime sexual partners, and people not living with a partner. The direction of natural selection is reversed among older parents, or after controlling for age at first live birth. These patterns are in line with the economic theory of fertility, in which earnings-increasing human capital may either increase or decrease fertility via income and substitution effects in the labour market. Studying natural selection can help us understand the genetic architecture of health outcomes: we find evidence in modern day Great Britain for multiple natural selection pressures that vary between subgroups in the direction and strength of their effects, that are strongly related to the socio-economic system, and that may contribute to health inequalities across income groups.


Subject(s)
Income , Selection, Genetic , Educational Status , Fertility/genetics , Humans , Socioeconomic Factors , United Kingdom
6.
Behav Genet ; 52(4-5): 306-314, 2022 09.
Article in English | MEDLINE | ID: mdl-35867259

ABSTRACT

The cell adhesion molecule 2 (CADM2) gene has appeared among the top associations in a wide range of genome-wide association studies (GWASs). This study aims to: (1) examine how widespread the role of CADM2 is in behavioural traits, and (2) investigate trait-specific effects on CADM2 expression levels across tissues. We conducted a phenome-wide association study in UK Biobank (N = 12,211-453,349) on 242 psycho-behavioral traits, both at the SNP and the gene-level. For comparison, we repeated the analyses for other large (and high LD) genes. We found significant associations between CADM2 and 50 traits (including cognitive, risk taking, and dietary traits), many more than for the comparison genes. We show that many trait associations are reduced when taking geographical stratification into account. S-Predixcan revealed that CADM2 expression in brain tissues was significantly associated with many traits; highly significant effects were also observed for lung, mammary, and adipose tissues. In conclusion, this study shows that the role of CADM2 extends to a wide range of psycho-behavioral traits, suggesting these traits may share a common biological denominator.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Biological Specimen Banks , Phenotype , Polymorphism, Single Nucleotide/genetics , United Kingdom
7.
Behav Genet ; 52(2): 92-107, 2022 03.
Article in English | MEDLINE | ID: mdl-34855049

ABSTRACT

This study aims to disentangle the contribution of genetic liability, educational attainment (EA), and their overlap and interaction in lifetime smoking. We conducted genome-wide association studies (GWASs) in UK Biobank (N = 394,718) to (i) capture variants for lifetime smoking, (ii) variants for EA, and (iii) variants that contribute to lifetime smoking independently from EA ('smoking-without-EA'). Based on the GWASs, three polygenic scores (PGSs) were created for individuals from the Netherlands Twin Register (NTR, N = 17,805) and the Netherlands Mental Health Survey and Incidence Study-2 (NEMESIS-2, N = 3090). We tested gene-environment (G × E) interactions between each PGS, neighborhood socioeconomic status (SES) and EA on lifetime smoking. To assess if the PGS effects were specific to smoking or had broader implications, we repeated the analyses with measures of mental health. After subtracting EA effects from the smoking GWAS, the SNP-based heritability decreased from 9.2 to 7.2%. The genetic correlation between smoking and SES characteristics was reduced, whereas overlap with smoking traits was less affected by subtracting EA. The PGSs for smoking, EA, and smoking-without-EA all predicted smoking. For mental health, only the PGS for EA was a reliable predictor. There were suggestions for G × E for some relationships, but there were no clear patterns per PGS type. This study showed that the genetic architecture of smoking has an EA component in addition to other, possibly more direct components. PGSs based on EA and smoking-without-EA had distinct predictive profiles. This study shows how disentangling different models of genetic liability and interplay can contribute to our understanding of the etiology of smoking.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Netherlands/epidemiology , Smoking/genetics , Social Class
8.
Mol Psychiatry ; 26(8): 4254-4264, 2021 08.
Article in English | MEDLINE | ID: mdl-31796895

ABSTRACT

Major depressive disorder (MDD) and loneliness are phenotypically and genetically correlated with coronary artery disease (CAD), but whether these associations are explained by pleiotropic genetic variants or shared comorbidities is unclear. To tease apart these scenarios, we first assessed the medical morbidity pattern associated with genetic risk factors for MDD and loneliness by conducting a phenome-wide association study in 18,385 European-ancestry individuals in the Vanderbilt University Medical Center biobank, BioVU. Polygenic scores for MDD and loneliness were developed for each person using previously published meta-GWAS summary statistics, and were tested for association with 882 clinical diagnoses ascertained via billing codes in electronic health records. We discovered strong associations with heart disease diagnoses, and next embarked on targeted analyses of CAD in 3893 cases and 4197 controls. We found odds ratios of 1.11 (95% CI, 1.04-1.18; P 8.43 × 10-4) and 1.13 (95% CI, 1.07-1.20; P 4.51 × 10-6) per 1-SD increase in the polygenic scores for MDD and loneliness, respectively. Results were similar in patients without psychiatric symptoms, and the increased risk persisted in females even after adjusting for multiple conventional risk factors and a polygenic score for CAD. In a final sensitivity analysis, we statistically adjusted for the genetic correlation between MDD and loneliness and re-computed polygenic scores. The polygenic score unique to loneliness remained associated with CAD (OR 1.09, 95% CI 1.03-1.15; P 0.002), while the polygenic score unique to MDD did not (OR 1.00, 95% CI 0.95-1.06; P 0.97). Our replication sample was the Atherosclerosis Risk in Communities (ARIC) cohort of 7197 European-ancestry participants (1598 incident CAD cases). In ARIC, polygenic scores for MDD and loneliness were associated with hazard ratios of 1.07 (95% CI, 0.99-1.14; P = 0.07) and 1.07 (1.01-1.15; P = 0.03), respectively, and we replicated findings from the BioVU sensitivity analyses. We conclude that genetic risk factors for MDD and loneliness act pleiotropically to increase CAD risk in females.


Subject(s)
Coronary Artery Disease , Depressive Disorder, Major , Coronary Artery Disease/genetics , Depressive Disorder, Major/genetics , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Loneliness , Male , Multifactorial Inheritance/genetics , Risk Factors
9.
Nature ; 533(7604): 539-42, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225129

ABSTRACT

Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.


Subject(s)
Brain/metabolism , Educational Status , Fetus/metabolism , Gene Expression Regulation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Alzheimer Disease/genetics , Bipolar Disorder/genetics , Cognition , Computational Biology , Gene-Environment Interaction , Humans , Molecular Sequence Annotation , Schizophrenia/genetics , United Kingdom
10.
Behav Brain Sci ; 45: e153, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36098435

ABSTRACT

Uchiyama et al. describe how a more complete measurement of the dynamic nature of culture could help us unmask the true richness of genetic effects on behaviour. I underscore this notion here by reflecting on the role that the dynamic relationship between culture and DNA has played in our evolutionary history and will play in our evolutionary future.


Subject(s)
Biological Evolution , Humans
11.
Hum Mol Genet ; 28(22): 3853-3865, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31518406

ABSTRACT

Humans are social animals that experience intense suffering when they perceive a lack of social connection. Modern societies are experiencing an epidemic of loneliness. Although the experience of loneliness is universally human, some people report experiencing greater loneliness than others. Loneliness is more strongly associated with mortality than obesity, emphasizing the need to understand the nature of the relationship between loneliness and health. Although it is intuitive that circumstantial factors such as marital status and age influence loneliness, there is also compelling evidence of a genetic predisposition toward loneliness. To better understand the genetic architecture of loneliness and its relationship with associated outcomes, we extended the genome-wide association study meta-analysis of loneliness to 511 280 subjects, and detect 19 significant genetic variants from 16 loci, including four novel loci, as well as 58 significantly associated genes. We investigated the genetic overlap with a wide range of physical and mental health traits by computing genetic correlations and by building loneliness polygenic scores in an independent sample of 18 498 individuals with EHR data to conduct a PheWAS with. A genetic predisposition toward loneliness was associated with cardiovascular, psychiatric, and metabolic disorders and triglycerides and high-density lipoproteins. Mendelian randomization analyses showed evidence of a causal, increasing, the effect of both BMI and body fat on loneliness. Our results provide a framework for future studies of the genetic basis of loneliness and its relationship to mental and physical health.


Subject(s)
Genetic Predisposition to Disease/genetics , Loneliness/psychology , Phenomics/methods , Female , Genome-Wide Association Study/methods , Genotype , Health , Humans , Male , Mendelian Randomization Analysis/methods , Mental Disorders/genetics , Mental Health , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
12.
Mol Psychiatry ; 25(3): 692-695, 2020 Mar.
Article in English | MEDLINE | ID: mdl-30705424

ABSTRACT

Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.

13.
Mol Psychiatry ; 25(3): 584-602, 2020 03.
Article in English | MEDLINE | ID: mdl-30283035

ABSTRACT

Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (ß = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (ß = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.


Subject(s)
Autistic Disorder/genetics , Basal Ganglia/pathology , Chromosome Disorders/genetics , DNA Copy Number Variations/genetics , Intellectual Disability/genetics , Adult , Autism Spectrum Disorder/genetics , Brain/pathology , Chromosome Deletion , Chromosome Duplication , Chromosomes, Human, Pair 16/genetics , Databases, Factual , Female , Globus Pallidus/pathology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neurodevelopmental Disorders/genetics , Organ Size/genetics , Putamen/pathology , Schizophrenia/genetics
14.
Nature ; 523(7561): 459-462, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26131930

ABSTRACT

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


Subject(s)
Body Height/genetics , Cognition , Homozygote , Biological Evolution , Blood Pressure/genetics , Cholesterol, LDL/genetics , Cohort Studies , Educational Status , Female , Forced Expiratory Volume/genetics , Genome, Human/genetics , Humans , Lung Volume Measurements , Male , Phenotype
15.
Hum Mol Genet ; 26(8): 1444-1451, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28165122

ABSTRACT

In recent years, multiple eQTL (expression quantitative trait loci) catalogs have become available that can help understand the functionality of complex trait-related single nucleotide polymorphisms (SNPs). In eQTL catalogs, gene expression is often strongly associated with multiple SNPs, which may reflect either one or multiple independent associations. Conditional eQTL analysis allows a distinction between dependent and independent eQTLs. We performed conditional eQTL analysis in 4,896 peripheral blood microarray gene expression samples. Our analysis showed that 35% of genes with a cis eQTL have at least two independent cis eQTLs; for several genes up to 13 independent cis eQTLs were identified. Also, 12% (671) of the independent cis eQTLs identified in conditional analyses were not significant in unconditional analyses. The number of GWAS catalog SNPs identified as eQTL in the conditional analyses increases with 24% as compared to unconditional analyses. We provide an online conditional cis eQTL mapping catalog for whole blood (https://eqtl.onderzoek.io/), which can be used to lookup eQTLs more accurately than in standard unconditional whole blood eQTL databases.


Subject(s)
Blood , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Alleles , Gene Expression Profiling , Gene Expression Regulation , Genetic Heterogeneity , Humans , Phenotype , Transcriptome/genetics
16.
Nicotine Tob Res ; 21(6): 723-730, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30053134

ABSTRACT

INTRODUCTION: Cigarette smoking and cannabis use are heritable traits and share, at least in part, a common genetic substrate. In recent years, the prevalence of alternative methods of nicotine intakes, such as electronic cigarette (e-cigarette) and water pipe use, has risen substantially. We tested whether the genetic vulnerability underlying cigarettes smoking and cannabis use explained variability in e-cigarette and water pipe use phenotypes, as these vaping methods are alternatives for smoking tobacco cigarettes and joints. METHODS: On the basis of the summary statistics of the International Cannabis Consortium and the Tobacco and Genetics Consortium, we generated polygenic risk scores (PRSs) for smoking and cannabis use traits, and used these to predict e-cigarette and water pipe use phenotypes in a sample of 5025 individuals from the Netherlands Twin Register. RESULTS: PRSs for cigarettes per day were positively associated with lifetime e-cigarette use and early initiation of water pipe use, but only in ex-smokers (odds ratio = 1.43, R2 = 1.56%, p = .011) and never cigarette smokers (odds ratio = 1.35, R2 = 1.60%, p = .013) respectively. CONCLUSIONS: Most associations of PRSs for cigarette smoking and cannabis use with e-cigarette and water pipe use were not significant, potentially due to a lack of power. The significant associations between genetic liability to smoking heaviness with e-cigarette and water pipe phenotypes are in line with studies indicating a common genetic background for substance-use phenotypes. These associations emerged only in nonsmokers, and future studies should investigate the nature of this observation. IMPLICATIONS: Our study showed that genetic vulnerability to smoking heaviness is associated with lifetime e-cigarette use and age at initiation of water pipe use. This finding has implications for the current debate on whether alternative smoking methods, such as usage of vaping devices, predispose to smoking initiation and related behaviors.


Subject(s)
Cannabis/genetics , Electronic Nicotine Delivery Systems/statistics & numerical data , Genetic Markers , Smoking/genetics , Substance-Related Disorders/genetics , Water Pipe Smoking/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cannabis/adverse effects , Female , Humans , Male , Middle Aged , Netherlands/epidemiology , Prevalence , Smoking/epidemiology , Substance-Related Disorders/epidemiology , Substance-Related Disorders/etiology , Young Adult
17.
J Pers ; 87(2): 386-397, 2019 04.
Article in English | MEDLINE | ID: mdl-29752830

ABSTRACT

OBJECTIVE: Loneliness is an aversive response to a discrepancy between desired and actual social relationships and correlates with personality. We investigate the relationship of loneliness and personality in twin family and molecular genetic data. METHOD: Phenotypic correlations between loneliness and the Big Five personality traits were estimated in 29,625 adults, and in a group with genome-wide genotype data (N = 4,222), genetic correlations were obtained. We explored whether genetic correlations may reflect causal relationships by investigating within monozygotic twin pair differences (Npairs = 2,662), by longitudinal within-subject changes in personality and loneliness (N = 4,260-9,238 longitudinal comparisons), and by longitudinal cross-lagged panel analyses (N = 15,628). Finally, we tested whether genetic correlations were due to cross-trait assortative mating (Nspouse pairs = 4,436). RESULTS: The strongest correlations with loneliness were observed for Neuroticism (r = .55) and Extraversion (r = -.33). Only Neuroticism showed a high correlation with loneliness independent of other personality traits (r = .50), so follow-up analyses focused on Neuroticism. The genetic correlation between loneliness and Neuroticism from genotyped variants was .71; a significant reciprocal causal relationship and nonsignificant cross-trait assortative mating imply that this is at least partly due to mediated pleiotropy. CONCLUSIONS: We show that the relationship between loneliness and personality is largely explained by its relationship with Neuroticism, which is substantially genetic in nature.


Subject(s)
Loneliness , Neuroticism/physiology , Personality/physiology , Registries , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Middle Aged , Netherlands , Personality/genetics , Phenotype , Polymorphism, Single Nucleotide , Young Adult
18.
PLoS Genet ; 12(10): e1006343, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27792727

ABSTRACT

It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (ß = 16.1, CI(ß) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (ß = 4.86,CI(ß) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest.


Subject(s)
Consanguinity , Genome-Wide Association Study , Schizophrenia/genetics , Female , Genome, Human , Genomics , Homozygote , Humans , Male , Polymorphism, Single Nucleotide , Schizophrenia/epidemiology , Schizophrenia/pathology
19.
Genome Res ; 25(6): 792-801, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25883321

ABSTRACT

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.


Subject(s)
Genetic Variation , Genome, Human , Alleles , Amino Acid Sequence , Female , Genomics , Haplotypes , Humans , INDEL Mutation , Male , Molecular Sequence Data , Mutation Rate , Polymorphism, Single Nucleotide , Retroelements/genetics , Sequence Alignment , Sequence Analysis, DNA
20.
Behav Genet ; 48(5): 374-385, 2018 09.
Article in English | MEDLINE | ID: mdl-30030655

ABSTRACT

Measurement of gene expression levels and detection of eQTLs (expression quantitative trait loci) are difficult in tissues with limited sample availability, such as the brain. However, eQTL overlap between tissues might be high, which would allow for inference of eQTL functioning in the brain via eQTLs detected in readily accessible tissues, e.g. whole blood. Applying Stratified Linkage Disequilibrium Score Regression (SLDSR), we quantified the enrichment in polygenic signal of blood and brain eQTLs in genome-wide association studies (GWAS) of 11 complex traits. We looked at eQTLs discovered in 44 tissues by the Genotype-Tissue Expression (GTEx) consortium and two other large representative studies, and found no tissue-specific eQTL effects. Next, we integrated the GTEx eQTLs with regions associated with tissue-specific histone modifiers, and interrogated their effect on rheumatoid arthritis and schizophrenia. We observed substantially enriched effects of eQTLs located inside regions bearing modification H3K4me1 on schizophrenia, but not rheumatoid arthritis, and not tissue-specific. Finally, we extracted eQTLs associated with tissue-specific differentially expressed genes and determined their effects on rheumatoid arthritis and schizophrenia, these analysis revealed limited enrichment of eQTLs associated with gene specifically expressed in specific tissues. Our results pointed to strong enrichment of eQTLs in their effect on complex traits, without evidence for tissue-specific effects. Lack of tissue-specificity can be either due to a lack of statistical power or due to the true absence of tissue-specific effects. We conclude that eQTLs are strongly enriched in GWAS signal and that the enrichment is not specific to the eQTL discovery tissue. Until sample sizes for eQTL discovery grow sufficiently large, working with relatively accessible tissues as proxy for eQTL discovery is sensible and restricting lookups for GWAS hits to a specific tissue for which limited samples are available might not be advisable.


Subject(s)
Gene Expression Regulation , Organ Specificity/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Blood/metabolism , Brain/metabolism , Gene Expression Profiling , Histone Code/genetics , Humans , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL