Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Proc Natl Acad Sci U S A ; 117(12): 6675-6685, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152119

ABSTRACT

A comprehensive understanding of the development and evolution of human B cell responses induced by pathogen exposure will facilitate the design of next-generation vaccines. Here, we utilized a high-throughput single B cell cloning technology to longitudinally track the human B cell response to the yellow fever virus 17D (YFV-17D) vaccine. The early memory B cell (MBC) response was mediated by both classical immunoglobulin M (IgM) (IgM+CD27+) and switched immunoglobulin (swIg+) MBC populations; however, classical IgM MBCs waned rapidly, whereas swIg+ and atypical IgM+ and IgD+ MBCs were stable over time. Affinity maturation continued for 6 to 9 mo following vaccination, providing evidence for the persistence of germinal center activity long after the period of active viral replication in peripheral blood. Finally, a substantial fraction of the neutralizing antibody response was mediated by public clones that recognize a fusion loop-proximal antigenic site within domain II of the viral envelope glycoprotein. Overall, our findings provide a framework for understanding the dynamics and complexity of human B cell responses elicited by infection and vaccination.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , Immunologic Memory/immunology , Yellow Fever Vaccine/immunology , Yellow Fever/prevention & control , Yellow fever virus/immunology , Adult , Humans , Vaccination , Vaccines, Attenuated/immunology , Viral Envelope Proteins/immunology , Virus Replication , Yellow Fever/immunology , Yellow Fever/virology , Yellow Fever Vaccine/administration & dosage
2.
Biomedicines ; 12(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540255

ABSTRACT

Therapeutic antibodies (Abs) which act on a broader range of epitopes may provide more durable protection against the genetic drift of a target, typical of viruses or tumors. When these Abs exist concurrently on the targeted antigen, several mechanisms of action (MoAs) can be engaged, boosting therapeutic potency. This study selected combinations of four and five Abs with non- or partially overlapping epitopes to the SARS-CoV-2 spike glycoprotein, on or outside the crucial receptor binding domain (RBD), to offer resilience to emerging variants and trigger multiple MoAs. The combinations were derived from a pool of unique-sequence scFv Ab fragments retrieved from two SARS-CoV-2-naïve human phage display libraries. Following recombinant expression to full-length human IgG1 candidates, a biolayer interferometric analysis mapped epitopes to bins and confirmed that up to four Abs from across the bins can exist simultaneously on the spike glycoprotein trimer. Not all the bins of Abs interfered with the spike protein binding to angiotensin converting enzyme 2 (ACE2) in competitive binding assays, nor neutralized the pseudovirus or authentic virus in vitro, but when combined in vivo, their inclusion resulted in a much stronger viral clearance in the lungs of intranasally challenged hamsters, compared to that of those treated with mono ACE2 blockers. In addition, the Ab mixtures activated in vitro reporter cells expressing Fc-gamma receptors (FcγRs) involved in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). The best four-Ab combination neutralized seventeen variants of concern from Wuhan-Hu1 to Omicron BA.4/BA.5 in vitro.

3.
Anal Biochem ; 411(1): 139-51, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21168382

ABSTRACT

Here we demonstrate methods to expand the throughput of the ProteOn XPR36 biosensor allowing for the simultaneous kinetic characterization of several multiplexed formats, such as 36 disparate antibodies targeting the same antigen, and facilitating detailed epitope binning and mapping studies. The kinetic rate constants determined by these methods correlated with those obtained on Biacore 2000 and the absolute parameter values obtained on the ProteOn's alginate-based GLC chip agreed closer with those from Biacore's flat C1 chip than Biacore's dextran-based CM4 chip. Pairwise epitope binning data from the ProteOn 36-ligand array format and those generated on an orthogonal array-based biosensor, the Octet QK384, gave similar results. In an epitope mapping study using biotinylated peptides, all three biosensor platforms were similar in their ability to identify antibodies that bound to linear epitopes. We apply alternative formats of the ProteOn array that enable a significantly higher number of assays to be conducted simultaneously than previously anticipated on this platform.


Subject(s)
Biosensing Techniques/methods , Protein Array Analysis/methods , Animals , Antibodies, Monoclonal/metabolism , Epitope Mapping , Epitopes/immunology , Immobilized Proteins/metabolism , Kinetics , Ligands , Peptide Library , Protein Binding , Rats , Titrimetry
4.
MAbs ; 13(1): 1862451, 2021.
Article in English | MEDLINE | ID: mdl-33491549

ABSTRACT

Bispecific antibodies are an important and growing segment in antibody therapeutics, particularly in the immuno-oncology space. Manufacturing of a bispecific antibody with two different heavy chains is greatly simplified if the light chains can be the same for both arms of the antibody. Here, we introduce a strain of common light chain chickens, called OmniClic®, that produces antibody repertoires largely devoid of light chain diversity. The antibody repertoire in these chickens is composed of diverse human heavy chain variable regions capable of high-affinity antigen-specific binding and broad epitope diversity when paired with the germline human kappa light chain. OmniClic birds can be used in immunization campaigns for discovery of human heavy chains to different targets. Subsequent pairing of the heavy chain with a germline human kappa light chain serves to facilitate bispecific antibody production by increasing the efficiency of correct pairing. Abbreviations: AID: activation-induced cytidine deaminase; bsAb: bispecific antibody; CDR: complementarity-determining region; CL: light chain constant region; CmLC: common light chain; D: diversity region; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment crystallizable; FcRn: neonatal Fc receptor; FR: framework region; GEM: gel-encapsulated microenvironment; Ig: immunoglobulin; IMGT: the international ImMunoGeneTics information system®; J: joining region; KO: knockout; mAb: monoclonal antibody; NGS: next-generation sequencing; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PGC: primordial germ cell; PGRN: progranulin; TCR: T cell receptor; V: variable region; VK: kappa light chain variable region; VL: light chain variable region; VH: heavy chain variable region.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Chickens/immunology , Epitopes/immunology , Immunoglobulin Light Chains/immunology , Animals , Antigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Flow Cytometry/methods , Humans , Immunization/methods , Immunoglobulin Heavy Chains/immunology , Immunoglobulin kappa-Chains/immunology , Protein Engineering/methods
5.
PLoS One ; 15(1): e0228164, 2020.
Article in English | MEDLINE | ID: mdl-31995598

ABSTRACT

Most of the approved monoclonal antibodies used in the clinic were initially discovered in mice. However, many targets of therapeutic interest are highly conserved proteins that do not elicit a robust immune response in mice. There is a need for non-mammalian antibody discovery platforms which would allow researchers to access epitopes that are not recognized in mammalian hosts. Recently, we introduced the OmniChicken®, a transgenic animal carrying human VH3-23 and VK3-15 at its immunoglobulin loci. Here, we describe a new version of the OmniChicken which carries VH3-23 and either VL1-44 or VL3-19 at its heavy and light chain loci, respectively. The Vλ-expressing birds showed normal B and T populations in the periphery. A panel of monoclonal antibodies demonstrated comparable epitope coverage of a model antigen compared to both wild-type and Vκ-expressing OmniChickens. Kinetic analysis identified binders in the picomolar range. The Vλ-expressing bird increases the antibody diversity available in the OmniChicken platform, further enabling discovery of therapeutic leads.


Subject(s)
Animals, Genetically Modified/genetics , Chickens/genetics , Immunoglobulin lambda-Chains/genetics , Animals , Animals, Genetically Modified/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , B-Lymphocytes/immunology , Chickens/immunology , Humans , Immunity, Humoral , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin lambda-Chains/immunology , Progranulins/immunology , T-Lymphocytes/immunology , Transgenes/genetics
6.
Antib Ther ; 3(3): 167-178, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33912793

ABSTRACT

BACKGROUND: Development of successful neutralizing antibodies is dependent upon broad epitope coverage to increase the likelihood of achieving therapeutic function. Recent advances in synthetic biology have allowed us to conduct an epitope binning study on a large panel of antibodies identified to bind to Ebola virus glycoprotein with only published sequences. METHODS AND RESULTS: A rapid, first-pass epitope binning experiment revealed seven distinct epitope families that overlapped with known structural epitopes from the literature. A focused set of antibodies was selected from representative clones per bin to guide a second-pass binning that revealed previously unassigned epitopes, confirmed epitopes known to be associated with neutralizing antibodies, and demonstrated asymmetric blocking of EBOV GP from allosteric effectors reported from literature. CONCLUSIONS: Critically, this workflow allows us to probe the epitope landscape of EBOV GP without any prior structural knowledge of the antigen or structural benchmark clones. Incorporating epitope binning on hundreds of antibodies during early stage antibody characterization ensures access to a library's full epitope coverage, aids in the identification of high quality reagents within the library that recapitulate this diversity for use in other studies, and ultimately enables the rational development of therapeutic cocktails that take advantage of multiple mechanisms of action such as cooperative synergistic effects to enhance neutralization function and minimize the risk of mutagenic escape. The use of high-throughput epitope binning during new outbreaks such as the current COVID-19 pandemic is particularly useful in accelerating timelines due to the large amount of information gained in a single experiment.

7.
Anal Biochem ; 386(2): 172-80, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19111520

ABSTRACT

We demonstrate the use of label-free real-time optical biosensors in competitive binding assays by epitope binning a panel of antibodies. We describe three assay orientations that we term in tandem, premix, and classical sandwich blocking, and we perform each of them on three platforms: ForteBio's Octet QK, Bio-Rad's ProteOn XPR36, and GE Healthcare's Biacore 3000. By testing whether antibodies block one another's binding to their antigen in a pairwise fashion, we establish a blocking profile for each antibody relative to the others in the panel. The blocking information is then used to create "bins" of antibodies with similar epitopes. The advantages and disadvantages of each biosensor, factors to consider when deciding on the most appropriate blocking assay orientation for a particular interaction system, and tips for dealing with ambiguous data are discussed. The data from our different assay orientations and biosensors agree very well, establishing these machines as valuable tools for characterizing antibody epitopes and multiprotein complexes of biological significance.


Subject(s)
Antibodies/chemistry , Biosensing Techniques/methods , Biological Assay , Biosensing Techniques/instrumentation , Epitopes/chemistry , Kinetics , Models, Biological , Sensitivity and Specificity
8.
MAbs ; 10(1): 71-80, 2018 01.
Article in English | MEDLINE | ID: mdl-29035625

ABSTRACT

Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans. Specifically, we generated transgenic chickens expressing antibodies from immunoglobulin heavy and light chain loci containing human variable regions and chicken constant regions. From these birds, paired human light and heavy chain variable regions are recovered and cloned as fully human recombinant antibodies. The human antibody-expressing chickens exhibit normal B cell development and raise immune responses to conserved human proteins that are not immunogenic in mice. Fully human monoclonal antibodies can be recovered with sub-nanomolar affinities. Binning data of antibodies to a human protein show epitope coverage similar to wild type chickens, which we previously showed is broader than that produced from rodent immunizations.


Subject(s)
Antibodies, Monoclonal, Humanized/biosynthesis , Antibodies, Monoclonal, Humanized/immunology , Antibody Affinity , Antibody Specificity , Antigens/immunology , Chickens/immunology , Epitopes/immunology , Immunoglobulins/immunology , Animals , Animals, Genetically Modified , Antigens/administration & dosage , B-Lymphocytes/immunology , Chickens/blood , Chickens/genetics , Epitope Mapping , Humans , Immunization , Immunoglobulins/blood , Immunoglobulins/genetics , Species Specificity , T-Lymphocytes/immunology
9.
Drug Discov Today ; 19(8): 1040-4, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24880105

ABSTRACT

Analytical tools are evolving to meet the need for the higher-throughput characterization of therapeutic monoclonal antibodies. An antibody's epitope is arguably its most important property because it underpins its functional activity but, because epitope selection is innate, it remains an empirical process. Here, we focus on the emergence of label-free biosensors with throughput capabilities orders of magnitude higher than the previous state-of-the-art, which can facilitate large assays such as epitope binning so that they can be incorporated alongside functional activity screens, enabling the rapid identification of leads that exhibit unique and functional epitopes. In addition to streamlining the drug development process by saving time and cost, the information from epitope binning assays could provide the basis for intellectual property protection.


Subject(s)
Antibodies, Monoclonal/chemistry , Epitopes/chemistry , High-Throughput Screening Assays/methods , Biological Assay/methods , Biosensing Techniques/methods , Epitope Mapping/methods
10.
PLoS One ; 8(11): e80501, 2013.
Article in English | MEDLINE | ID: mdl-24223227

ABSTRACT

Monoclonal antibodies (mAbs) are a growing segment of therapeutics, yet their in vitro characterization remains challenging. While it is essential that a therapeutic mAb recognizes the native, physiologically occurring epitope, the generation and selection of mAbs often rely on the use of purified recombinant versions of the antigen that may display non-native epitopes. Here, we present a method to measure both, the binding affinity of a therapeutic mAb towards its native unpurified antigen in human serum, and the antigen's endogenous concentration, by combining the kinetic exclusion assay and Biacore's calibration free concentration analysis. To illustrate the broad utility of our method, we studied a panel of mAbs raised against three disparate soluble antigens that are abundant in the serum of healthy donors: proprotein convertase subtilisin/kexin type 9 (PCSK9), progranulin (PGRN), and fatty acid binding protein (FABP4). We also determined the affinity of each mAb towards its purified recombinant antigen and assessed whether the interactions were pH-dependent. Of the six mAbs studied, three did not appear to discriminate between the serum and recombinant forms of the antigen; one mAb bound serum antigen with a higher affinity than recombinant antigen; and two mAbs displayed a different affinity for serum antigen that could be explained by a pH-dependent interaction. Our results highlight the importance of taking pH into account when measuring the affinities of mAbs towards their serum antigens, since the pH of serum samples becomes increasingly alkaline upon aerobic handling.


Subject(s)
Antibodies, Monoclonal/metabolism , Antigens/blood , Antigens/metabolism , Cell Line , Fatty Acid-Binding Proteins/blood , Fatty Acid-Binding Proteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/metabolism , Progranulins , Proprotein Convertase 9 , Proprotein Convertases/blood , Proprotein Convertases/metabolism , Serine Endopeptidases/blood , Serine Endopeptidases/metabolism
11.
J Immunol Methods ; 382(1-2): 101-16, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22609372

ABSTRACT

Label-free biosensors are often used in the discovery of therapeutic antibodies to characterize the epitope binding regions of a panel of monoclonal antibodies that target a specific antigen, thus facilitating their organization into epitope groups or "bins". When tested in a pairwise combinatorial manner, two antibodies that compete with one another for binding to a specific antigen may be grouped into the same epitope bin - that is, they recognize similar or overlapping epitopes - whereas two antibodies that bind simultaneously to the antigen are placed into different epitope bins. However, depending on the assay format used, results from such experiments can sometimes contradict one another. Here, we provide two examples that illustrate how antigen heterogeneity, either inherent in an antigen sample, or induced by the assay conditions, can confound the interpretation of epitope binning results and, in some cases, lead to erroneous conclusions. We highlight why assays that employ solution antigen are often more reliable than those that employ immobilized antigen and, by corroborating our binning results with assays that utilize native antigen, we determine which subpopulations of our heterogeneous antigen samples are biologically relevant and thus improve the correlation between epitope bins and functional activity. Furthermore, we provide recommendations for performing definitive binning assays and a diagnostic assay procedure that can be followed when antigen heterogeneity is suspected.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens/genetics , Biosensing Techniques , Epitopes/immunology , Antigen-Antibody Reactions , Antigens/immunology , Fatty Acid-Binding Proteins/analysis , Fatty Acid-Binding Proteins/immunology , Glial Cell Line-Derived Neurotrophic Factor Receptors/immunology , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/immunology , Molecular Sequence Data , Progranulins
12.
PLoS One ; 7(4): e36261, 2012.
Article in English | MEDLINE | ID: mdl-22558410

ABSTRACT

Therapeutic antibodies are often engineered or selected to have high on-target binding affinities that can be challenging to determine precisely by most biophysical methods. Here, we explore the dynamic range of the kinetic exclusion assay (KinExA) by exploiting the interactions of an anti-DKK antibody with a panel of DKK antigens as a model system. By tailoring the KinExA to each studied antigen, we obtained apparent equilibrium dissociation constants (K(D) values) spanning six orders of magnitude, from approximately 100 fM to 100 nM. Using a previously calibrated antibody concentration and working in a suitable concentration range, we show that a single experiment can yield accurate and precise values for both the apparent K(D) and the apparent active concentration of the antigen, thereby increasing the information content of an assay and decreasing sample consumption. Orthogonal measurements obtained on Biacore and Octet label-free biosensor platforms further validated our KinExA-derived affinity and active concentration determinations. We obtained excellent agreement in the apparent affinities obtained across platforms and within the KinExA method irrespective of the assay orientation employed or the purity of the recombinant or native antigens.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Affinity , Biological Assay/methods , Intercellular Signaling Peptides and Proteins/immunology , Animals , Biosensing Techniques , Calibration , Cell Line, Tumor , Humans , Mice , Rats
13.
J Mol Biol ; 421(4-5): 525-36, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22197375

ABSTRACT

Alzheimer's disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of ß-amyloid (Aß) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aß40. Ponezumab can label Aß that is deposited in brain parenchyma found in sections from Alzheimer's disease casualties and in transgenic mouse models that overexpress Aß. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of the soluble Aß present in the circulation appears to be available for ponezumab binding because systemic administration of ponezumab greatly elevates plasma Aß40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aß. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aß40, we determined the X-ray crystal structure of ponezumab in complex with Aß40 and found that the Aß40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AßV40 in the Aß-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aß40 and the brain Aß-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Amino Acid Sequence , Amyloid beta-Peptides/blood , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Brain/pathology , Crystallography, X-Ray , Disease Models, Animal , Humans , Injections, Intravenous , Mice , Mice, Transgenic , Models, Molecular , Molecular Sequence Data , Neuroprotective Agents/administration & dosage , Plasma/chemistry , Protein Binding , Protein Conformation
14.
J Mol Biol ; 420(3): 204-19, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22543237

ABSTRACT

Bispecific antibodies and antibody fragments are a new class of therapeutics increasingly utilized in the clinic for T cell recruitment (catumaxomab anti-EpCAM/CD3 and blinatumomab anti-CD19/CD3), increase in the selectivity of targeting, or simultaneous modulation of multiple cellular pathways. While the clinical potential for certain bispecific antibody formats is clear, progress has been hindered because they are often difficult to manufacture, may suffer from suboptimal pharmacokinetic properties, and may be limited due to potential immunogenicity issues. Current state-of-the-art human IgG-like bispecific technologies require co-expression of two heavy chains with a single light chain, use crossover domains to segregate light chains, or utilize scFv (single-chain fragment variable)-Fc fusion. We have engineered both human IgG1 and IgG2 subtypes, with minimal point mutations, to form full-length bispecific human antibodies with high efficiency and in high purity. In our system, the two antibodies of interest can be expressed and purified separately, mixed together under appropriate redox conditions, resulting in a formation of a stable bispecific antibody with high yields. With this approach, it is not necessary to generate new antibodies that share a common light chain, therefore allowing the immediate use of an existing antibody regardless of whether it has been generated via standard hybridoma or display methods. We demonstrate the generality of the approach and show that these bispecific antibodies have properties similar to those of wild-type IgGs, and we further demonstrate the utility of the technology with an example of a CD3/CD20 bispecific antibody that effectively depletes B cells in vitro and in vivo.


Subject(s)
Antibodies, Bispecific/immunology , Immunoglobulin G/metabolism , Protein Engineering/methods , Animals , Antibodies, Bispecific/genetics , Antibodies, Bispecific/isolation & purification , Antibodies, Bispecific/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antibody Specificity , Antigens, CD20/immunology , B-Lymphocytes/immunology , CD3 Complex/immunology , Cetuximab , Cytotoxicity, Immunologic , Female , Histocompatibility Antigens Class I/metabolism , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL , Point Mutation , Rats , Rats, Sprague-Dawley , Receptors, Fc/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , T-Lymphocytes/immunology
15.
Anal Biochem ; 328(2): 233-43, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15113702

ABSTRACT

Assay conditions were established to screen a panel of drugs for binding to liposome surfaces using a surface plasmon resonance (SPR) biosensor. Drugs were found to bind negligibly or reversibly or were retained on the liposome surface. Cationic amphiphilic drugs fell into the last class and correlated with drugs that induce phospholipidosis in vivo. To a first approximation, a single-site model yielded apparent binding affinities that adequately described a drug's dose-dependent binding to liposome surfaces. Affinities ranged at least 1000-fold within the drug panel. A liposome's drug-binding capacity and affinity depended on both the lipid headgroup and the drug's structure. Although a drug's charge state generally dominated whether or not it remained bound to the liposome, subtle structural differences between members of certain drug families led to them having widely differing binding affinities. A comparison between the dissociation of drugs from liposome surfaces by Biacore and the lipid retention measurements determined by a parallel artificial membrane permeability assay was drawn. The results from this study demonstrate the potential of using SPR-based assays to characterize drug/liposome-binding interactions.


Subject(s)
Lipids/chemistry , Pharmaceutical Preparations/chemistry , Surface Plasmon Resonance/methods , Adrenergic beta-Antagonists/chemistry , Binding Sites , Binding, Competitive , Desipramine/chemistry , Dibucaine/chemistry , Kinetics , Lipidoses , Liposomes/chemistry , Liposomes/metabolism , Permeability , Propranolol/chemistry , Reproducibility of Results , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL