Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Growth Factors ; 37(1-2): 1-11, 2019 04.
Article in English | MEDLINE | ID: mdl-31161823

ABSTRACT

Interleukin (IL)-11 belongs to the IL-6 family of cytokines, discovered over 30 years ago. While early studies focused on the ability of IL-11 to stimulate megakaryocytopoiesis, the importance of this cytokine to inflammatory disease and cancers is only just beginning to be uncovered. This review outlines recent advances in our understanding of IL-11 biology, and highlights the development of novel therapeutics with the potential for clinical targeting of signaling by this cytokine in multiple diseases.


Subject(s)
Cardiovascular Diseases/genetics , Craniofacial Dysostosis/genetics , Immune System Diseases/genetics , Interleukin-11/genetics , Neoplasms/genetics , Animals , Humans , Interleukin-11/metabolism , Mutation
2.
NAR Genom Bioinform ; 6(3): lqae096, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39184376

ABSTRACT

Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged. Using this protein-protein interaction modelling, we identified the strongest 5 candidates, CDK1, CDC20, PRC1, CCNA2 and TRIP13, as structurally tractable to therapeutic targeting by small molecules. siRNA knockdown of these candidates performed in MOC and control normal fibroblast cell lines identified CDK1, CCNA2, PRC1 and CDC20, as potential drug targets in MOC. Three targets (TRIP13, CDC20, CDK1) were validated using known small molecule inhibitors. Our findings demonstrate the utility of our pipeline for identifying new targets and highlight potential new therapeutic options for MOC patients.

3.
Cell Death Dis ; 14(12): 828, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097550

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer deaths. Though chemotherapy is the main treatment option for advanced CRC, patients invariably acquire resistance to chemotherapeutic drugs and fail to respond to the therapy. Although understanding the mechanisms regulating chemoresistance has been a focus of intense research to manage this challenge, the pathways governing resistance to drugs are poorly understood. In this study, we provide evidence for the role of ubiquitin ligase NEDD4 in resistance developed against the most commonly used CRC chemotherapeutic drug 5-fluorouracil (5-FU). A marked reduction in NEDD4 protein abundance was observed in a panel of CRC cell lines and patient-derived xenograft samples that were resistant to 5-FU. Knockout of NEDD4 in CRC cells protected them from 5-FU-mediated apoptosis but not oxaliplatin or irinotecan. Furthermore, NEDD4 depletion in CRC cells reduced proliferation, colony-forming abilities and tumour growth in mice. Follow-up biochemical analysis highlighted the inhibition of the JNK signalling pathway in NEDD4-deficient cells. Treatment with the JNK activator hesperidin in NEDD4 knockout cells sensitised the CRC cells against 5-FU. Overall, we show that NEDD4 regulates cell proliferation, colony formation, tumour growth and 5-FU chemoresistance in CRC cells.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Humans , Animals , Mice , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/therapeutic use , Mice, Knockout , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism
4.
Cancers (Basel) ; 12(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825052

ABSTRACT

Colorectal cancer (CRC) is a challenging disease, with a high mortality rate and limited effective treatment options, particularly for late-stage disease. Patient-derived xenografts (PDXs) have emerged as an informative, renewable experimental resource to model CRC architecture and biology. Here, we describe the generation of a biobank of CRC PDXs from stage I to stage IV patients. We demonstrate that PDXs within our biobank recapitulate the histopathological and mutation features of the original patient tumor. In addition, we demonstrate the utility of this resource in pre-clinical chemotherapy and targeted treatment studies, highlighting the translational potential of PDX models in the identification of new therapies that will improve the overall survival of CRC patients.

5.
Cell Death Differ ; 27(2): 742-757, 2020 02.
Article in English | MEDLINE | ID: mdl-31296963

ABSTRACT

Gastrointestinal epithelial cells provide a selective barrier that segregates the host immune system from luminal microorganisms, thereby contributing directly to the regulation of homeostasis. We have shown that from early embryonic development Bcl-G, a Bcl-2 protein family member with unknown function, was highly expressed in gastrointestinal epithelial cells. While Bcl-G was dispensable for normal growth and development in mice, the loss of Bcl-G resulted in accelerated progression of colitis-associated cancer. A label-free quantitative proteomics approach revealed that Bcl-G may contribute to the stability of a mucin network, which when disrupted, is linked to colon tumorigenesis. Consistent with this, we observed a significant reduction in Bcl-G expression in human colorectal tumors. Our study identifies an unappreciated role for Bcl-G in colon cancer.


Subject(s)
Colorectal Neoplasms/metabolism , Inflammation/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Colitis/metabolism , Colitis/pathology , Colorectal Neoplasms/pathology , Humans , Inflammation/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-bcl-2/deficiency , Proto-Oncogene Proteins c-bcl-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL