Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 617(7962): 764-768, 2023 05.
Article in English | MEDLINE | ID: mdl-37198478

ABSTRACT

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Subject(s)
COVID-19 , Critical Illness , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genotype , Genotyping Techniques , Monocytes/metabolism , Phenotype , rab GTP-Binding Proteins/genetics , Transcriptome , Whole Genome Sequencing
2.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37291798

ABSTRACT

The ability to identify and track T-cell receptor (TCR) sequences from patient samples is becoming central to the field of cancer research and immunotherapy. Tracking genetically engineered T cells expressing TCRs that target specific tumor antigens is important to determine the persistence of these cells and quantify tumor responses. The available high-throughput method to profile TCR repertoires is generally referred to as TCR sequencing (TCR-Seq). However, the available TCR-Seq data are limited compared with RNA sequencing (RNA-Seq). In this paper, we have benchmarked the ability of RNA-Seq-based methods to profile TCR repertoires by examining 19 bulk RNA-Seq samples across 4 cancer cohorts including both T-cell-rich and T-cell-poor tissue types. We have performed a comprehensive evaluation of the existing RNA-Seq-based repertoire profiling methods using targeted TCR-Seq as the gold standard. We also highlighted scenarios under which the RNA-Seq approach is suitable and can provide comparable accuracy to the TCR-Seq approach. Our results show that RNA-Seq-based methods are able to effectively capture the clonotypes and estimate the diversity of TCR repertoires, as well as provide relative frequencies of clonotypes in T-cell-rich tissues and low-diversity repertoires. However, RNA-Seq-based TCR profiling methods have limited power in T-cell-poor tissues, especially in highly diverse repertoires of T-cell-poor tissues. The results of our benchmarking provide an additional appealing argument to incorporate RNA-Seq into the immune repertoire screening of cancer patients as it offers broader knowledge into the transcriptomic changes that exceed the limited information provided by TCR-Seq.


Subject(s)
Benchmarking , Neoplasms , Humans , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Neoplasms/genetics , Sequence Analysis, RNA
4.
Neuropathology ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639066

ABSTRACT

In the evolving landscape of ependymoma classification, which integrates histological, molecular, and anatomical context, we detail a rare case divergent from the usual histopathological spectrum. We present the case of a 37-year-old man with symptomatic spinal cord compression at the L3-L4 level. Neuroradiological evaluation revealed an intradural, encapsulated mass. Histologically, the tumor displayed atypical features: bizarre pleomorphic giant cells, intranuclear inclusions, mitotic activity, and a profusion of eosinophilic cytoplasm with hyalinized vessels, deviating from the characteristic perivascular pseudorosettes or myxopapillary patterns. Immunohistochemical staining bolstered this divergence, marking the tumor cells positive for glial fibrillary acidic protein and epithelial membrane antigen with a characteristic ring-like pattern, and CD99 but negative for Olig-2. These markers, alongside methylation profiling, facilitated its classification as a myxopapillary ependymoma (MPE), despite the atypical histologic features. This profile underscores the necessity of a multifaceted diagnostic process, especially when histological presentation is uncommon, confirming the critical role of immunohistochemistry and molecular diagnostics in classifying morphologically ambiguous ependymomas and exemplifying the histological diversity within MPEs.

5.
Clin Immunol ; 234: 108911, 2022 01.
Article in English | MEDLINE | ID: mdl-34929414

ABSTRACT

BACKGROUND: Natural killer (NK) cells play an essential role against viruses. NK cells express killer cell immunoglobulin-like receptors (KIRs) which regulate their activity and function. The polymorphisms in KIR haplotypes confer differential viral susceptibility and disease severity caused by infections. We investigated the association between KIR genes and COVID-19 disease severity. METHODS: 424 COVID-19 positive patients were divided according to their disease severity into mild, moderate and severe. KIR genes were genotyped using next generation sequencing (NGS). Association between KIR genes and COVID-19 disease severity was conducted and significant correlations were reported. RESULTS: In the COVID-19 patients, KIR Bx genotype was more common than AA genotype. The Bx genotype was found more frequently in patients with mild disease, while in severe disease the AA genotype was more common than the Bx genotype. The KIR2DS4 gene carried the highest risk for severe COVID-19 infection (OR 8.48, pc= 0.0084) followed by KIR3DL1 (OR 7.61, pc= 0.0192). CONCLUSIONS: Our findings suggest that KIR2DS4 and KIR3DL1 genes carry risk for severe COVID-19 disease.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/genetics , Receptors, KIR/genetics , Adult , COVID-19/metabolism , Female , Gene Frequency/genetics , Genotype , Humans , Killer Cells, Natural/metabolism , Male , Middle Aged , SARS-CoV-2/pathogenicity
6.
Ophthalmic Plast Reconstr Surg ; 38(5): 475-482, 2022.
Article in English | MEDLINE | ID: mdl-35699213

ABSTRACT

PURPOSE: Pigmented basal cell carcinomas (PBCC) is an uncommon variant of basal cell carcinoma of the periocular region with limited information in the literature. We highlight the clinicopathological profile and somatic mutations in periocular PBCC. METHODS: The clinicopathological features and somatic mutations in patients with periocular PBCC were examined and compared with periocular non-PBCC reported in the literature. Next-generation sequencing panel analysis for the excised tumors identified somatic mutations. RESULTS: In a total of 31 patients, PBCC was common in females (54%; p = 0.03); as a unilateral lower eyelid (n = 22; 71%), solitary mass (n = 30; 98%). Pathologic subtypes were variable. Most were nodular or mixed variants (n = 23; 74%). During the follow up (2.5-4.5 years), 1 patient (3.5%) had a recurrence. The clinical and pathologic features of PBCC were similar to those reported in nonperiocular locations. Somatic mutations detected in 25/31 tumors. Variants in 50/161 genes in the panel were noted. PTCH1 (14/31), TERT (12/31), and SMO (7/31) variants were common. Fifteen patients had novel drivers, including POLE, FANCD2, and CREBBP. SMO mutations were significantly more common in females (7/7), lower eyelid (5/7), and TERT mutations were more common in nodular subtype (10/12). CONCLUSIONS: In this large cohort of a relatively uncommon variant of BCC, the clinicopathological features and tumor behavior of PBCC was similar to periocular non-PBCC. The somatic mutation spectrum of PBCC resembles that reported in nonperiocular cutaneous BCC with novel drivers identified. We identified several potential actionable mutations that could be targeted with molecular therapy.


Subject(s)
Carcinoma, Basal Cell , Eyelid Neoplasms , Skin Neoplasms , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Eyelid Neoplasms/genetics , Eyelid Neoplasms/pathology , Female , Humans , Male , Mutation , Skin/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
7.
Acta Neuropathol ; 141(1): 85-100, 2021 01.
Article in English | MEDLINE | ID: mdl-33216206

ABSTRACT

Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , DNA Mismatch Repair/genetics , Isocitrate Dehydrogenase/genetics , Adolescent , Adult , Astrocytoma/diagnosis , Brain Neoplasms/diagnosis , Child , DNA Methylation , Female , Gene Dosage , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Microsatellite Instability , Mutation/genetics , Neoplasm Recurrence, Local , Prognosis , Signal Transduction/genetics , Survival Analysis , X-linked Nuclear Protein/genetics , Young Adult
8.
Pituitary ; 24(3): 359-373, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492612

ABSTRACT

PURPOSE: Pituitary tumors are the second most common primary brain tumors. Functional tumors demonstrate increased PD-L1 expression, but expression of other checkpoint regulators has not been characterized. We sought to characterize the immune microenvironment of human pituitary tumors to identify new treatment opportunities. METHODS: 72 pituitary tumors were evaluated for expression of the immune regulatory markers programmed death ligand 1 (PD-L1), programmed death ligand 2 (PD-L2), V-domain Ig suppressor of T cell activation (VISTA), lymphocyte activation gene 3 (LAG3) and tumor necrosis factor receptor superfamily member 4 (OX40) by immunohistochemistry (IHC). Lymphocyte infiltration, macrophage infiltration, and angiogenesis were analyzed using IHC. Expression of pituitary tumor initiating cell marker CD15 and mismatch repair proteins MutS protein homolog 2 (MSH2) and MutS protein homolog 6 (MSH6) was also assessed. RESULTS: Pituitary tumors were infiltrated by macrophages and T cells, and they expressed varying levels of PD-L1, PD-L2, VISTA, LAG3, and OX40. Functional tumors and tumors with high expression of tumor stem cell markers had higher immune cell infiltration and greater expression of immunosuppressive checkpoint regulators. Increased PD-L1 and LAG3 and reduced VISTA were observed in primary tumors compared to recurrent tumors. CONCLUSION: Immune cell infiltration and checkpoint regulator expression vary depending on functional status and presence of pituitary tumor initiating cells. Functional tumors may have a particularly immunosuppressive microenvironment. Further studies of immune checkpoint blockade of pituitary tumors, particularly functional tumors, are warranted, though combination therapy may be required.


Subject(s)
B7-H1 Antigen , Pituitary Neoplasms , Humans , Immunohistochemistry , MutS Proteins , Neoplasm Recurrence, Local , Pituitary Neoplasms/genetics , Tumor Microenvironment
9.
Genomics ; 112(2): 1746-1753, 2020 03.
Article in English | MEDLINE | ID: mdl-31669704

ABSTRACT

Sanger Sequencing and immunohistochemistry was employed to investigate the TERT promoter mutations and TERT protein expression with their association to clinicopathological characteristics in over 2200 samples of Middle Eastern origin from 13 different types of cancers. The TERT promoter mutations were most frequently present in bladder cancer (68.6%), followed by central nervous system tumors (28.7%), thyroid cancer (15.4%), prostate cancer (9.3%), endometrial carcinoma (3.7%), rhabdomyosarcoma (1.4%), colorectal cancer (1%), epithelial ovarian carcinoma (0.7%) and breast cancer (0.7%). No mutations were observed in other types of cancers. In bladder cancer, we found significant inverse association with metastasis and a trend to good survival in patients with TERT mutations. In gliomas, TERT promoter mutations predicted poor prognosis. In thyroid cancer, high frequency of TERT mutation was observed in poorly differentiated carcinoma. In addition, TERT promoter mutations were associated with aggressive markers and poor outcome in follicular thyroid carcinomas.


Subject(s)
Breast Neoplasms/genetics , Central Nervous System Neoplasms/genetics , Mutation , Prostatic Neoplasms/genetics , Telomerase/genetics , Urinary Bladder Neoplasms/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Central Nervous System Neoplasms/pathology , Female , Humans , Male , Middle Aged , Neoplasm Metastasis , Promoter Regions, Genetic , Prostatic Neoplasms/pathology , Urinary Bladder Neoplasms/pathology
11.
Genet Med ; 22(10): 1598-1605, 2020 10.
Article in English | MEDLINE | ID: mdl-32461667

ABSTRACT

PURPOSE: Pathogenic autosomal recessive variants in CAD, encoding the multienzymatic protein initiating pyrimidine de novo biosynthesis, cause a severe inborn metabolic disorder treatable with a dietary supplement of uridine. This condition is difficult to diagnose given the large size of CAD with over 1000 missense variants and the nonspecific clinical presentation. We aimed to develop a reliable and discerning assay to assess the pathogenicity of CAD variants and to select affected individuals that might benefit from uridine therapy. METHODS: Using CRISPR/Cas9, we generated a human CAD-knockout cell line that requires uridine supplements for survival. Transient transfection of the knockout cells with recombinant CAD restores growth in absence of uridine. This system determines missense variants that inactivate CAD and do not rescue the growth phenotype. RESULTS: We identified 25 individuals with biallelic variants in CAD and a phenotype consistent with a CAD deficit. We used the CAD-knockout complementation assay to test a total of 34 variants, identifying 16 as deleterious for CAD activity. Combination of these pathogenic variants confirmed 11 subjects with a CAD deficit, for whom we describe the clinical phenotype. CONCLUSIONS: We designed a cell-based assay to test the pathogenicity of CAD variants, identifying 11 CAD-deficient individuals who could benefit from uridine therapy.


Subject(s)
Aspartate Carbamoyltransferase , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) , Cell Line , Dihydroorotase , Humans , Uridine
12.
Pediatr Blood Cancer ; 67(8): e28309, 2020 08.
Article in English | MEDLINE | ID: mdl-32472748

ABSTRACT

Germline biallelic mutations in one of the mismatch repair genes, mutS homolog 2, mutS homolog 6, mutL homolog 1, or postmeiotic segregation increased 2, result in one of the most aggressive cancer syndromes in humans termed as constitutional mismatch repair deficiency (CMMRD). Individuals with CMMRD are affected with multiple tumors arising from multiple organs during childhood, and these individuals rarely reach adulthood without specific interventions. The most common tumors observed are central nervous system, hematological, and gastrointestinal malignancies. The incidence of CMMRD is expected to be high in low-resource settings due to a high rate of consanguinity in these regions, and it is thought to be underrecognized and consequently underdiagnosed. This position paper is therefore important to provide a summary of the current situation, and to highlight the necessity of increasing awareness, diagnostic criteria, and surveillance to improve survival for patients and family members.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , Genes, Neoplasm , Germ-Line Mutation , Neoplasm Proteins/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/mortality , Humans , Incidence
14.
Nature ; 560(7717): 164, 2018 08.
Article in English | MEDLINE | ID: mdl-30082692
15.
Nature ; 554(7693): 405, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32094946
17.
Oncologist ; 23(12): 1401-1406, 2018 12.
Article in English | MEDLINE | ID: mdl-30104292

ABSTRACT

Primary brain tumors are a leading cause of cancer-related morbidity and mortality in children. Glioblastoma (GBM) is a high-grade astrocytoma that occurs in both children and adults and is associated with a poor prognosis. Despite extensive study in recent years, the clinical management of these tumors has remained largely unchanged, consisting of surgical resection, conventional chemotherapy, and radiotherapy. Although the etiology and genomic drivers in GBM are diverse, constitutional mismatch repair-deficiency (CMMRD) syndrome is a rare, recessively inherited disease with a predisposition to gliomagenesis. CMMRD results from biallelic mutations in one of the mismatch repair genes including mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), mutS homolog 6 (MSH6), and post-meiotic segregation increased 2 (PMS2). In this report, we present the case of a 5-year-old female with GBM and CMMRD due to an MSH6 homozygous c.1883G>A mutation, who continues to experience an exceptional and durable response (9 months) to the immune checkpoint inhibitor (ICPI) nivolumab. Our patient presented with acute neurologic decline and increased intracranial pressure. Neuroimaging studies revealed a large left frontoparietal mass requiring neurosurgical decompression and resection. Histopathologic analyses resulted in a diagnosis of de novo GBM that was BRAF wild type and negative for programmed death-ligand 1 protein expression. She received standard-of-care treatment with surgery, radiation therapy, and temozolomide; however, the tumor recurred 3 months after the initial diagnosis. Molecular analyses of tumor and blood tissues revealed an MSH6 homozygous c.1883G>A mutation consistent with CMMRD. Given her CMMRD status, she was treated with nivolumab (3 mg/kg doses every 2 weeks for 36 weeks) and showed a 60% reduction in tumor size, improved clinical symptoms, and an ongoing durable response lasting 10 months to date. Our study highlights a durable response to the ICPI nivolumab in a pediatric patient with recurrent/refractory CMMRD-associated GBM. We show that incorporating genomic and/or molecular testing for CMMRD into routine pediatric oncology clinical care can identify a subset of patients likely to benefit from ICPI. KEY POINTS: Constitutional mismatch repair-deficiency (CMMRD) syndrome, alternatively known as biallelic mismatch repair deficiency syndrome, occurs in subset of pediatric cancer patients, including those with primary brain tumors.Patients from Arab and other developing countries are predicted to have higher incidence of CMMRD due to high prevalence of consanguinity.Integration of molecular and/or genomic testing into routine clinical care for pediatric cancer patients is important to identify patients with CMMRD syndrome.Patient with CMMRD-associated cancers may show increased responsiveness to immune checkpoint inhibitors.To the authors' knowledge, this is the first report in the Arab world of a durable response to immune checkpoint inhibitors in a pediatric glioblastoma patient.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Brain Neoplasms/drug therapy , DNA Mismatch Repair/genetics , DNA Repair Enzymes/genetics , Glioblastoma/drug therapy , Nivolumab/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Brain Neoplasms/pathology , Child, Preschool , Female , Glioblastoma/pathology , Humans , Nivolumab/pharmacology
18.
BMC Med Genet ; 19(1): 10, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343221

ABSTRACT

BACKGROUND: Extraneural metastases are relatively rare manifestations of medulloblastoma. CASE PRESENTATION: We present the case of a young boy with group three MYCN-amplified medulloblastoma. He received multimodal chemotherapy consisting of gross total resection followed by postoperative craniospinal radiation and adjuvant chemotherapy. The patient developed extraneural metastases 4 months after the end of therapy. Literature review identifies the poor prognosis of MYCN-amplified medulloblastomas as well as extraneural metastases; we review the current limitations and future directions of medulloblastoma treatment options. CONCLUSION: To the best of our knowledge, this is the first molecularly characterized report of extraneural metastases of medulloblastoma in a child.


Subject(s)
Medulloblastoma/genetics , N-Myc Proto-Oncogene Protein/genetics , Chemotherapy, Adjuvant , Child, Preschool , Craniospinal Irradiation , Cyclophosphamide/therapeutic use , Dose-Response Relationship, Radiation , Etoposide/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , Isotretinoin/therapeutic use , Magnetic Resonance Imaging , Male , Medulloblastoma/drug therapy , Medulloblastoma/radiotherapy , Postoperative Period , Proto-Oncogene Proteins c-myc/genetics , Vincristine/therapeutic use
19.
Neurosurg Focus ; 44(6): E12, 2018 06.
Article in English | MEDLINE | ID: mdl-29852761

ABSTRACT

OBJECTIVE Craniopharyngiomas are among the most challenging of intracranial tumors to manage because of their pattern of growth, associated morbidities, and high recurrence rate. Complete resection on initial encounter can be curative, but it may be impeded by the risks posed by the involved neurovascular structures. Recurrent craniopharyngiomas, in turn, are frequently refractory to additional surgery and adjuvant radiation or chemotherapy. METHODS The authors conducted a review of primary literature. RESULTS Recent advances in the understanding of craniopharyngioma biology have illuminated potential oncogenic targets for pharmacotherapy. Specifically, distinct molecular profiles define two histological subtypes of craniopharyngioma: adamantinomatous and papillary. The discovery of overactive B-Raf signaling in the adult papillary subtype has led to reports of targeted inhibitors, with a growing acceptance for refractory cases. An expanding knowledge of the biological underpinnings of craniopharyngioma will continue to drive development of targeted therapies and immunotherapies that are personalized to the molecular signature of each individual tumor. CONCLUSIONS The rapid translation of genomic findings to medical therapies for recurrent craniopharyngiomas serves as a roadmap for other challenging neurooncological diseases.


Subject(s)
Craniopharyngioma/genetics , Pituitary Neoplasms/genetics , Translational Research, Biomedical/methods , Craniopharyngioma/diagnosis , Craniopharyngioma/therapy , Humans , Immunotherapy/methods , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics , Translational Research, Biomedical/trends
20.
Cell Commun Signal ; 15(1): 34, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28923059

ABSTRACT

BACKGROUND: Meningiomas are the most common primary intracranial tumors in adults. While a majority of meningiomas are slow growing neoplasms that may cured by surgical resection, a subset demonstrates more aggressive behavior and insidiously recurs despite surgery and radiation, without effective alternative treatment options. Elucidation of critical mitogenic pathways in meningioma oncogenesis may offer new therapeutic strategies. We performed an integrated genomic and molecular analysis to characterize the expression and function of osteoglycin (OGN) in meningiomas and explored possible therapeutic approaches for OGN-expressing meningiomas. METHODS: OGN mRNA expression in human meningiomas was assessed by RNA microarray and RNAscope. The impact of OGN on cell proliferation, colony formation, and mitogenic signaling cascades was assessed in a human meningioma cell line (IOMM-Lee) with stable overexpression of OGN. Furthermore, the functional consequences of introducing an AKT inhibitor in OGN-overexpressing meningioma cells were assessed. RESULTS: OGN mRNA expression was dramatically increased in meningiomas compared to a spectrum of other brain tumors and normal brain. OGN-overexpressing meningioma cells demonstrated an elevated rate of cell proliferation, cell cycle activation, and colony formation as compared with cells transfected with control vector. In addition, NF2 mRNA and protein expression were both attenuated in OGN-overexpressing cells. Conversely, mTOR pathway and AKT activation increased in OGN-overexpressing cells compared to control cells. Lastly, introduction of an AKT inhibitor reduced OGN expression in meningioma cells and resulted in increased cell death and autophagy, suggestive of a reciprocal relationship between OGN and AKT. CONCLUSION: We identify OGN as a novel oncogene in meningioma proliferation. AKT inhibition reduces OGN protein levels in meningioma cells, with a concomitant increase in cell death, which provides a promising treatment option for meningiomas with OGN overexpression.


Subject(s)
Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/genetics , Meningeal Neoplasms/metabolism , Meningioma/metabolism , Signal Transduction , Autophagy , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Meningeal Neoplasms/genetics , Meningioma/genetics , Neurofibromin 2/genetics , Neurofibromin 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL