Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Surg ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041226

ABSTRACT

OBJECTIVE: To test the efficacy of metformin during the induction of coronary ischemia on myocardial performance in a large animal model of coronary artery disease (CAD) and metabolic syndrome (MS), with or without concomitant extracellular vesicular (EV) therapy. BACKGROUND: Although surgical and endovascular revascularization are durably efficacious for many patients with CAD, up to one-third are poor candidates for standard therapies. For these patients, many of whom have comorbid MS, adjunctive strategies are needed. EV therapy has shown promise in this context, but its efficacy is attenuated by MS. We investigated whether metformin pretreatment could ameliorate therapeutic decrements associated with MS. METHODS: Yorkshire swine (n=29) were provided a high-fat diet to induce MS, whereupon an ameroid constrictor was placed to induce CAD. Animals were initiated on 1000 mg PO metformin or placebo; all then underwent repeat thoracotomy for intramyocardial injection of EVs or saline. Swine were maintained for five weeks before acquisition of functional and perfusion data immediately prior to terminal myocardial harvest. Immunoblotting and immunofluorescence were performed on the most ischemic tissue from all groups. RESULTS: Regardless of EV administration, animals that received metformin exhibited significantly improved ejection fraction, cardiac index, and contractility at rest and during rapid myocardial pacing; improved perfusion to the most ischemic myocardial region at rest and during pacing; and markedly reduced apoptosis. CONCLUSIONS: Metformin administration reduced apoptotic cell death, improved perfusion, and augmented both intrinsic and load-dependent myocardial performance in a highly translatable large animal model of chronic myocardial ischemia and metabolic syndrome.

2.
Basic Res Cardiol ; 118(1): 3, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639609

ABSTRACT

Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.


Subject(s)
Myocardial Infarction , Oxidative Phosphorylation , Mice , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Endothelial Cells/metabolism , Proteomics , Myocardial Infarction/metabolism , Mitochondria/metabolism , Endothelium/metabolism
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675188

ABSTRACT

Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Humans , Cardiovascular Diseases/metabolism , Proteomics , Extracellular Vesicles/metabolism , Hypoxia/metabolism , Mesenchymal Stem Cells/metabolism
4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768399

ABSTRACT

We have previously shown that normoxia serum-starved extracellular vesicle (EV) therapy improves myocardial function, perfusion, and angiogenesis in a swine model of chronic myocardial ischemia. Hypoxia-modified EVs have increased abundance of anti-oxidant, pro-angiogenic, and pro-survival proteins. The purpose of this study is to investigate the differential effects of normoxia serum-starved EVs and hypoxia-modified EVs on myocardial function, perfusion, and microvascular density in chronically ischemic myocardium. Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, the pigs underwent intramyocardial injection of either normoxia serum-starved EVs (NOR, n = 10) or hypoxia-modified EVs (HYP, n = 7). Five weeks later, pigs were euthanized, and ischemic myocardium was harvested. Hypoxia EV treatment was associated with improved contractility compared to NOR, as well as improved capillary density, without changes in arteriolar density. There were trends towards improved perfusion at rest and during pacing in the HYP group compared to NOR. Ischemic myocardium in the HYP group had increased pro-angiogenic Akt and ERK signaling and decreased expression of anti-angiogenic markers compared to the NOR group. In the setting of chronic myocardial ischemia, hypoxia-modified EVs may enhance contractility, capillary density, and angiogenic signaling pathways compared to normoxia serum-starved EVs.


Subject(s)
Extracellular Vesicles , Myocardial Ischemia , Swine , Animals , Neovascularization, Physiologic , Coronary Circulation , Myocardial Ischemia/metabolism , Myocardium/metabolism , Hypoxia/metabolism , Perfusion , Extracellular Vesicles/metabolism , Disease Models, Animal
5.
Am J Physiol Heart Circ Physiol ; 322(6): H891-H905, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35333121

ABSTRACT

Microvascular disease plays critical roles in the dysfunction of all organ systems, and there are many methods available to assess the microvasculature. These methods can either assess the target organ directly or assess an easily accessible organ such as the skin or retina so that inferences can be extrapolated to the other systems and/or related diseases. Despite the abundance of exploratory research on some of these modalities and their possible applications, there is a general lack of clinical use. This deficiency is likely due to two main reasons: the need for standardization of protocols to establish a role in clinical practice or the lack of therapies targeted toward microvascular dysfunction. Also, there remain some questions to be answered about the coronary microvasculature, as it is complex, heterogeneous, and difficult to visualize in vivo even with advanced imaging technology. This review will discuss novel approaches that are being used to assess microvasculature health in several key organ systems, and evaluate their clinical utility and scope for further development.


Subject(s)
Microvessels , Microvessels/diagnostic imaging
6.
Am J Physiol Heart Circ Physiol ; 322(5): H819-H841, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35333122

ABSTRACT

Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.


Subject(s)
Coronary Vessels , Hypertension , Coronary Circulation , Endothelium, Vascular , Humans , Microcirculation/physiology , Microvessels
7.
Proteomics ; 21(10): e2000279, 2021 05.
Article in English | MEDLINE | ID: mdl-33860983

ABSTRACT

While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)-based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross-comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS-CoV-2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Mass Spectrometry/methods , Proteomics/methods , SARS-CoV-2/physiology , Animals , COVID-19/diagnosis , COVID-19/pathology , Humans , Protein Interaction Mapping/methods , Protein Interaction Maps , Protein Kinases/analysis , Protein Kinases/metabolism , Protein Processing, Post-Translational , Proteome/analysis , Proteome/metabolism , Receptor, EphA2/analysis , Receptor, EphA2/metabolism , Signal Transduction
8.
Am J Physiol Heart Circ Physiol ; 320(5): H1999-H2010, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33861149

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.


Subject(s)
Extracellular Vesicles/metabolism , Heart Failure/metabolism , Mesenchymal Stem Cells/metabolism , Myocardial Ischemia/metabolism , Animals , Humans , Myocytes, Cardiac/metabolism
9.
Am J Physiol Heart Circ Physiol ; 321(5): H839-H849, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34506225

ABSTRACT

Yorkshire swine were fed standard diet (n = 7) or standard diet containing applesauce rich in caffeic acid with Lactobacillus plantarum (n = 7) for 3 wk. An ameroid constrictor was next placed around the left coronary circumflex artery, and the dietary regimens were continued. At 14 wk, cardiac function, myocardial perfusion, vascular density, and molecular signaling in ischemic myocardium were evaluated. The L. plantarum-applesauce augmented NF-E2-related factor 2 (Nrf2) in the ischemic myocardium and induced Nrf2-regulated antioxidant enzymes heme oxygenase-1 (HO-1), NADPH dehydrogenase quinone 1 (NQO-1), and thioredoxin reductase (TRXR-1). Improved left ventricular diastolic function and decreased myocardial collagen expression were seen in animals receiving the L. plantarum-applesauce supplements. The expression of endothelial nitric oxide synthase (eNOS) was increased in ischemic myocardial tissue of the treatment group, whereas levels of asymmetric dimethyl arginine (ADMA), hypoxia inducible factor 1α (HIF-1α), and phosphorylated MAPK (pMAPK) were decreased. Collateral-dependent myocardial perfusion was unaffected, whereas arteriolar and capillary densities were reduced as determined by α-smooth muscle cell actin and CD31 immunofluorescence in ischemic myocardial tissue. Dietary supplementation with L. plantarum-applesauce is a safe and effective method of enhancing Nrf2-mediated antioxidant signaling cascade in ischemic myocardium. Although this experimental diet was associated with a reduction in hypoxic stimuli, decreased vascular density, and without any change in collateral-dependent perfusion, the net effect of an increase in antioxidant activity and eNOS expression resulted in improvement in diastolic function.NEW & NOTEWORTHY Colonization of the gut microbiome with certain strains of L. Plantarum has been shown to convert caffeic acid readily available in applesauce to 4-vinyl-catechol, a potent activator of the Nrf2 antioxidant defense pathway. In this exciting study, we show that simple dietary supplementation with L. Plantarum-applesauce-mediated Nrf2 activation supports vascular function, ameliorates myocardial ischemic diastolic dysfunction, and upregulates expression of eNOS.


Subject(s)
Lactobacillus plantarum/metabolism , Myocardial Ischemia/therapy , Myocardium/enzymology , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type III/metabolism , Probiotics , Ventricular Dysfunction, Left/therapy , Ventricular Function, Left , Animal Feed , Animals , Coronary Circulation , Diastole , Disease Models, Animal , Endothelial Cells/enzymology , Female , Fibrosis , Heme Oxygenase-1/metabolism , Male , Microvascular Density , Myocardial Ischemia/enzymology , Myocardial Ischemia/microbiology , Myocardial Ischemia/physiopathology , Myocardium/pathology , NAD(P)H Dehydrogenase (Quinone)/metabolism , Recovery of Function , Signal Transduction , Sus scrofa , Thioredoxins/metabolism , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/microbiology , Ventricular Dysfunction, Left/physiopathology
10.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918396

ABSTRACT

Cardiovascular diseases continue to be the leading cause of death worldwide, with ischemic heart disease as the most significant contributor. Pharmacological and surgical interventions have improved clinical outcomes, but are unable to ameliorate advanced stages of end-heart failure. Successful preclinical studies of new therapeutic modalities aimed at revascularization have shown short lasting to no effects in the clinical practice. This lack of success may be attributed to current challenges in patient selection, endpoint measurements, comorbidities, and delivery systems. Although challenges remain, the field of therapeutic angiogenesis is evolving, as novel strategies and bioengineering approaches emerge to optimize delivery and efficacy. Here, we describe the structure, vascularization, and regulation of the vascular system with particular attention to the endothelium. We proceed to discuss preclinical and clinical findings and present challenges and future prospects in the field.


Subject(s)
Myocardial Ischemia/therapy , Neovascularization, Physiologic , Animals , Clinical Trials as Topic , Humans
11.
Circ J ; 80(1): 4-10, 2016.
Article in English | MEDLINE | ID: mdl-26489456

ABSTRACT

Despite many advances in percutaneous and surgical interventions in the treatment of coronary artery disease (CAD), up to one-third of patients are still either not candidates or receive suboptimal revascularization. Calpains are a class of calcium-activated non-lysosomal cysteine proteases that serve as a proteolytic unit for cellular homeostasis. Uncontrolled activation of calpain has been found to be involved in the pathogenesis of myocardial reperfusion injury, cardiac hypertrophy, myocardial stunning and cardiac ischemia. Inhibition of calpains has been shown to significantly attenuate myocardial stunning and reduced infarct size after ischemia-reperfusion. Calpain inhibition therefore serves as a potential medical therapy for patients suffering from a number of diseases, including CAD.


Subject(s)
Calpain/metabolism , Cardiomegaly/enzymology , Coronary Artery Disease/enzymology , Myocardial Reperfusion Injury/enzymology , Animals , Cardiomegaly/pathology , Cardiomegaly/therapy , Coronary Artery Disease/pathology , Coronary Artery Disease/therapy , Enzyme Activation , Humans , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/therapy
12.
Med Sci (Basel) ; 12(1)2024 01 03.
Article in English | MEDLINE | ID: mdl-38249080

ABSTRACT

Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.


Subject(s)
Angiogenesis , Extracellular Vesicles , Signal Transduction , Cell Communication , Cardiovascular Physiological Phenomena
13.
Med Sci (Basel) ; 12(1)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38390858

ABSTRACT

The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Humans , Myocardial Ischemia/therapy , Extracellular Matrix , Myocardial Infarction/therapy , Heart , Myocardium
14.
Bioengineering (Basel) ; 11(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38534492

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.

15.
Surgery ; 175(2): 265-270, 2024 02.
Article in English | MEDLINE | ID: mdl-37940431

ABSTRACT

BACKGROUND: Inflammation and disruption of cardiac metabolism are prevalent in the setting of myocardial ischemia. Canagliflozin, a sodium-glucose costransporter-2 inhibitor, has beneficial effects on the heart, though the precise mechanisms are unknown. This study investigated the effects of canagliflozin therapy on metabolic pathways and inflammation in ischemic myocardial tissue using a swine model of chronic myocardial ischemia. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. Two weeks later, pigs received either no drug (n = 8) or 300 mg canagliflozin (n = 8) daily. Five weeks later, pigs underwent terminal harvest and tissue collection. RESULTS: Canagliflozin treatment was associated with a trend toward decreased expression of fatty acid oxidation inhibitor acetyl-CoA carboxylase and decreased phosphorylated/inactivated acetyl-CoA carboxylase, a promotor of fatty acid oxidation, compared with control ischemic myocardium (P = .08, P = .03). There was also a significant modulation in insulin resistance markers p-IRS1, p-PKCα, and phosphoinositide 3-kinase in ischemic myocardium of the canagliflozin group compared with the control group (all P < .05). Canagliflozin treatment was associated with a significant increase in inflammatory markers interleukin 6, interleukin 17, interferon-gamma, and inducible nitric oxide synthase (all P < .05). There was a trend toward decreased expression of the anti-inflammatory cytokines interleukin 10 (P = .16) and interleukin 4 (P = .31) with canagliflozin treatment. CONCLUSION: The beneficial effects of canagliflozin therapy appear to be associated with inhibition of fatty acid oxidation and enhancement of insulin signaling in ischemic myocardium. Interestingly, canagliflozin appears to increase the levels of several inflammatory markers, but further studies are required to better understand how canagliflozin modulates inflammatory signaling pathways.


Subject(s)
Myocardial Ischemia , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Swine , Animals , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Canagliflozin/metabolism , Myocardium/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Acetyl-CoA Carboxylase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/therapeutic use , Myocardial Ischemia/drug therapy , Myocardial Ischemia/complications , Myocardial Ischemia/metabolism , Inflammation/metabolism , Glucose/metabolism , Symporters/metabolism , Fatty Acids/metabolism , Disease Models, Animal
16.
Biomedicines ; 12(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38540200

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are known to be cardioprotective independent of glucose control, but the mechanisms of these benefits are unclear. We previously demonstrated improved cardiac function and decreased fibrosis in a swine model of chronic myocardial ischemia. The goal of this study is to use high-sensitivity proteomic analyses to characterize specific molecular pathways affected by SGLT-2 inhibitor canagliflozin (CAN) therapy in a swine model of chronic myocardial ischemia. METHODS: Chronic myocardial ischemia was induced in sixteen Yorkshire swine via the placement of an ameroid constrictor to the left circumflex coronary artery. After two weeks of recovery, swine received either 300 mg of CAN daily (n = 8) or a control (n = 8). After five weeks of therapy, the group of swine were euthanized, and left ventricular tissue was harvested and sent for proteomic analysis. RESULTS: Total proteomic analysis identified a total of 3256 proteins between the CAN and control groups. Three hundred and five proteins were statistically different. This included 55 proteins that were downregulated (p < 0.05, fold change <0.5) and 250 that were upregulated (p < 0.05, fold change >2) with CAN treatment. Pathway analysis demonstrated the upregulation of several proteins involved in metabolism and redox activity in the CAN-treated group. The CAN group also exhibited a downregulation of proteins involved in motor activity and cytoskeletal structure. CONCLUSIONS: In our swine model of chronic myocardial ischemia, CAN therapy alters several proteins involved in critical molecular pathways, including redox regulation and metabolism. These findings provide additional mechanistic insights into the cardioprotective effects of canagliflozin.

17.
Physiol Rep ; 12(5): e15976, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472161

ABSTRACT

Small animal models have shown improved cardiac function with DPP-4 inhibition, but many human studies have shown worse outcomes or no benefit. We seek to bridge the gap by studying the DPP-4 inhibitor sitagliptin in a swine model of chronic myocardial ischemia using proteomic analysis. Thirteen Yorkshire swine underwent the placement of an ameroid constrictor on the left coronary circumflex artery to model chronic myocardial ischemia. Two weeks post-op, swine received either sitagliptin 100 mg daily (SIT, n = 5) or no drug (CON, n = 8). After 5 weeks of treatment, swine underwent functional measurements and tissue harvest. In the SIT group compared to CON, there was a trend towards decreased cardiac index (p = 0.06). The non-ischemic and ischemic myocardium had 396 and 166 significantly decreased proteins, respectively, in the SIT group compared to CON (all p < 0.01). This included proteins involved in fatty acid oxidation (FAO), myocardial contraction, and oxidative phosphorylation (OXPHOS). Sitagliptin treatment resulted in a trend towards decreased cardiac index and decreased expression of proteins involved in OXPHOS, FAO, and myocardial contraction in both ischemic and non-ischemic swine myocardium. These metabolic and functional changes may provide some mechanistic evidence for outcomes seen in clinical studies.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Myocardial Ischemia , Swine , Humans , Animals , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Proteome/metabolism , Oxidative Phosphorylation , Sitagliptin Phosphate/therapeutic use , Proteomics/methods , Myocardium/metabolism , Hypoglycemic Agents/therapeutic use , Disease Models, Animal
18.
Article in English | MEDLINE | ID: mdl-38879117

ABSTRACT

INTRODUCTION: Sodium-glucose cotransporter-2 inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome and the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia. METHODS: Twenty-one Yorkshire swine were fed a high-fat diet starting at 6 weeks of age to induce metabolic syndrome. At 11 weeks, all underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce chronic myocardial ischemia. After 2 weeks, swine received either control (CON) (n = 11) or CAN 300 mg by mouth daily (n = 10) for 5 weeks, whereupon all underwent terminal harvest. RESULTS: There was a significant increase in cardiac output and heart rate with a decrease in pulse pressure in the CAN group compared with CON (all P values < .05). The CAN group had a significant increase in capillary density (P = .02). There was no change in myocardial perfusion or arteriolar density. CAN induced a significant increase in markers of angiogenesis, including Phospho-endothelial nitric oxide synthase, Endothelial nitric oxide synthase, vascular endothelial growth factor receptor-1, heat shock protein 70, and extracellular signal-regulated kinases (all P values < .05), plausibly resulting in capillary angiogenesis. CONCLUSIONS: CAN treatment leads to a significant increase in capillary density and augmented cardiac function in a swine model of chronic myocardial ischemia in the setting of metabolic syndrome. This work further elucidates the mechanism of sodium-glucose cotransporter-2 inhibitors in patients with cardiac disease; however, more studies are needed to determine if this increase in capillary density plays a role in the improvements seen in clinical studies.

19.
J Am Coll Surg ; 238(6): 1045-1055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38288953

ABSTRACT

BACKGROUND: Although sodium-glucose cotransporter-2 inhibitors have been shown to improve cardiovascular outcomes in general, little is presently known about any sex-specific changes that may result from this therapy. We sought to investigate and quantify potential sex-specific changes seen with the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a swine model of chronic myocardial ischemia. STUDY DESIGN: Eighteen Yorkshire swine underwent left thoracotomy with placement of an ameroid constrictor. Two weeks postop, swine were assigned to receive either control (F = 5 and M = 5) or CAN 300 mg daily (F = 4 and M = 4). After 5 weeks of therapy, swine underwent myocardial functional measurements, and myocardial tissue was sent for proteomic analysis. RESULTS: Functional measurements showed increased cardiac output, stroke volume, ejection fraction, and ischemic myocardial flow at rest in male swine treated with CAN compared with control male swine (all p < 0.05). The female swine treated with CAN had no change in cardiac function as compared with control female swine. Proteomic analysis demonstrated 6 upregulated and 97 downregulated proteins in the CAN female group compared with the control female group. Pathway analysis showed decreases in proteins in the tricarboxylic acidic cycle. The CAN male group had 639 upregulated and 172 downregulated proteins compared with control male group. Pathway analysis showed increases in pathways related to cellular metabolism and decreases in pathways relevant to the development of cardiomyopathy and to oxidative phosphorylation. CONCLUSIONS: Male swine treated with CAN had significant improvements in cardiac function that were not observed in female swine treated with CAN. Moreover, CAN treatment in male swine was associated with significantly more changes in protein expression than in female swine treated with CAN. The increased proteomic changes seen in the CAN male group likely contributed to the more robust changes in cardiac function seen in male swine treated with CAN.


Subject(s)
Canagliflozin , Myocardial Ischemia , Proteomics , Sodium-Glucose Transporter 2 Inhibitors , Animals , Female , Male , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Chronic Disease , Disease Models, Animal , Myocardial Ischemia/metabolism , Myocardium/metabolism , Sex Factors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Swine
20.
PLoS One ; 19(7): e0307922, 2024.
Article in English | MEDLINE | ID: mdl-39074126

ABSTRACT

Although both clinical data and animal models suggest cardiovascular benefits following administration of Dipeptidyl Peptidase 4 (DPP-4) inhibitors, the underlying mechanisms remain unclear. We therefore sought to evaluate the effect of the DPP-4 inhibitor sitagliptin on myocardial fibrosis, and insulin signaling in chronic myocardial ischemia using a swine model. An ameroid constrictor placement on the left coronary circumflex artery of thirteen Yorkshire swine to model chronic myocardial ischemia. After two weeks of recovery, swine were assigned to one of two groups: control (CON, n = 8), or sitagliptin 100mg daily (SIT, n = 5). After 5 weeks of treatment, the swine underwent terminal harvest with collection of myocardial tissue. Fibrosis was quantified using Masson's trichrome. Protein expression was quantified by Immunoblotting. Trichrome stain demonstrated a significant decrease in perivascular and interstitial fibrosis in the SIT group relative to CON (all p<0.05). Immunoblot showed a reduction in Jak2, the pSTAT3 to STAT 3 Ratio, pSMAD 2/3, and SMAD 2/3, and an increase in STAT 3 in the SIT group relative to CON (all p<0.05). SIT treatment was associated with increased expression of insulin receptor one and decreased expression of makers for insulin resistance, including phospho-PKC- alpha, RBP-4, SIRT1, and PI3K (p<0.05). Sitagliptin results in a reduction in perivascular and interstitial fibrosis and increased insulin sensitivity in chronically ischemic swine myocardium. This likely contributes to the improved cardiovascular outcomes seen with DPP-4 inhibitors.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Disease Models, Animal , Fibrosis , Insulin , Myocardial Ischemia , Myocardium , Signal Transduction , Sitagliptin Phosphate , Animals , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Signal Transduction/drug effects , Insulin/metabolism , Myocardial Ischemia/metabolism , Myocardial Ischemia/drug therapy , Myocardial Ischemia/pathology , Swine , Myocardium/metabolism , Myocardium/pathology , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL