Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Br J Haematol ; 203(3): 477-480, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37612131

ABSTRACT

Colony-stimulating factor 3 (CSF3) is a key factor in neutrophil production and function, and recombinant forms have been used clinically for decades to treat congenital and acquired neutropenia. Although biallelic inactivation of its receptor CSF3R is a well-established cause of severe congenital neutropenia (SCN), no corresponding Mendelian disease has been ascribed to date to CSF3. Here, we describe three patients from two families each segregating a different biallelic inactivating variant in CSF3 with SCN. Complete deficiency of CSF3 as a result of nonsense-mediated decay (NMD) could be demonstrated on RT-PCR using skin fibroblasts-derived RNA. The phenotype observed in this cohort mirrors that documented in mouse and zebrafish models of CSF3 deficiency. Our results suggest that CSF3 deficiency in humans causes a novel autosomal recessive form of SCN.

2.
Neurol Genet ; 10(3): e200156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38784058

ABSTRACT

Background and Objectives: The endoplasmic reticulum (ER) membrane protein complex is a conserved multisubunit transmembrane complex that enables energy-independent insertion of newly synthesized membrane proteins into ER membranes, mediating protein folding, phospholipid transfer from ER to mitochondria, and elimination of misfolded proteins. The first subunit of EMC (EMC1) is encoded by EMC1. Both monoallelic de novo and biallelic EMC1 variants have been identified to cause cerebellar atrophy, visual impairment, and psychomotor retardation (CAVIPMR) [OMIM #616875]. Eight families with biallelic EMC1 variants and CAVIPMR have been reported. Here, we describe 8 individuals from 5 Kuwaiti families from the same tribe, with the previously reported homozygous pathogenic missense EMC1 variant [c.245C>T:p.(Thr82Met)] and CAVIPMR. Methods: Proband exome sequencing was performed in 3 families, while targeted molecular testing for EMC1 [c.245C>T:p.(Thr82Met)] variant was performed in the other 2 families based on strong clinical suspicion and tribal origin. Sanger sequencing confirmed variant segregation with disease in all families. Results: We identified 8 individuals from 5 Kuwaiti families with the homozygous pathogenic EMC1 variant [c.245C>T:p.(Thr82Met)] previously reported in a Turkish family with CAVIPMR. The variant was absent from Kuwait Medical Genetic Center database, thus unlikely to represent a population founder allelic variant. The average age at symptom onset was 11 weeks, with all families reporting either visual abnormalities, hypotonia, and/or global developmental delay (GDD) as the presenting features. Shared clinical features included GDD (8/8), microcephaly (8/8), truncal hypotonia (8/8), visual impairment (7/7), and failure to thrive (7/7). Other common features included hyperreflexia (5/6; 83%), peripheral hypertonia (3/5; 60%), dysmorphism (3/6; 50%), epilepsy (4/8; 50%), and chorea (3/8; 36%). Brain imaging showed cerebellar atrophy in 4/7 (57%) and cerebral atrophy in 3/6 (50%) individuals. Discussion: The presence of exact biallelic homozygous EMC1 variant in 5 Kuwaiti families from the same tribe suggests a tribal founder allelic variant. The clinical features in this study are consistent with the phenotypic spectrum of EMC1-associated CAVIPMR in previous reports. The presence of chorea, first noted in this study, further expands the phenotypic spectrum. Our findings emphasize the importance of targeted EMC1 variant [c.245C>T:p.(Thr82Met)] testing for infants from affected tribe who present with visual impairment, GDD, and hypotonia.

3.
Mol Genet Genomic Med ; 11(12): e2256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37592902

ABSTRACT

BACKGROUND: Very long-chain fatty acids (VLCFAs) composed of more than 20 carbon atoms are essential in the biosynthesis of cell membranes in the brain, skin, and retina. VLCFAs are elongated beyond 28 carbon atoms by ELOVL4 enzyme. Variants in ELOVL4 are associated with three Mendelian disorders: autosomal dominant (AD) Stargardt-like macular dystrophy type 3, AD spinocerebellar ataxia, and autosomal recessive disorder congenital ichthyosis, spastic quadriplegia and impaired intellectual development (ISQMR). Only seven subjects from five unrelated families with ISQMR have been described, all of which have biallelic single-nucleotide variants. METHODS: We performed clinical exome sequencing on probands from four unrelated families with neuro-ichthyosis. RESULTS: We identified three novel homozygous ELOVL4 variants. Two of the families originated from the same Saudi tribe and had the exact homozygous exonic deletion in ELOVL4, while the third and fourth probands had two different novel homozygous missense variants. Seven out of the eight affected subjects had profound developmental delay, epilepsy, axial hypotonia, peripheral hypertonia, and ichthyosis. Delayed myelination and corpus callosum hypoplasia were seen in two of five subjects with brain magnetic rosonance imaging and cerebral atrophy in three. CONCLUSION: Our study expands the allelic spectrum of ELOVL4-related ISQMR. The detection of the same exonic deletion in two unrelated Saudi family from same tribe suggests a tribal founder mutation.


Subject(s)
Ichthyosis, Lamellar , Ichthyosis , Macular Degeneration , Humans , Mutation , Macular Degeneration/genetics , Retina/metabolism , Ichthyosis/genetics , Carbon , Eye Proteins/genetics , Membrane Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL