ABSTRACT
Pyridoxal-5'-phosphate (PLP) and derivatives of this cofactor enable a plethora of reactions in both enzyme-mediated and free-in-solution transformations. With few exceptions in each category, such chemistry has predominantly involved two-electron processes. This sometimes poses a significant challenge for using PLP to build tetrasubstituted carbon centers, especially when the reaction is reversible. The ability to access radical pathways is paramount to broadening the scope of reactions catalyzed by this coenzyme. In this study, we demonstrate the ability to access a radical PLP-based intermediate and engage this radical intermediate in a number of C-C bond-forming reactions. By selection of an appropriate oxidant, single-electron oxidation of the quinonoid intermediate can be achieved, which can subsequently be applied to C-C bond-forming reactions. Through this radical reaction pathway, we synthesized a series of α-tertiary amino acids and esters to investigate the substrate scope and identify nonproductive reaction pathways. Beyond the amino acid model system, we demonstrate that other classes of amine substrates can be applied in this reaction and that a range of small molecule reagents can serve as coupling partners to the semiquinone radical. We anticipate that this versatile semiquinone radical species will be central to the development of a range of novel reactions.
ABSTRACT
Infections with Pseudomonas aeruginosa are a looming threat to public health. New treatment strategies are needed to combat this pathogen, for example, by blocking the production of virulence factors like pyocyanin. A photoaffinity analogue of an antipyocyanin compound was developed to interrogate the inhibitor's molecular mechanism of action. While we sought to develop antivirulence inhibitors, the proteomics results suggested that the compounds had antibiotic adjuvant activity. Unexpectedly, we found that these compounds amplify the bactericidal activity of colistin, a well-characterized antibiotic, suggesting they may represent a first-in-class antibiotic adjuvant therapy. Analogues have the potential not only to widen the therapeutic index of cationic antimicrobial peptides like colistin, but also to be effective against colistin-resistant strains, strengthening our arsenal to combat P. aeruginosa infections.