Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Publication year range
1.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214472

ABSTRACT

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Subject(s)
CD28 Antigens/deficiency , Inheritance Patterns/genetics , Papillomaviridae/physiology , Skin/virology , T-Lymphocytes/immunology , Adult , Amino Acid Sequence , Animals , Base Sequence , CD28 Antigens/genetics , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Child , Endopeptidases/metabolism , Female , Genes, Recessive , HEK293 Cells , Homozygote , Humans , Immunity, Humoral , Immunologic Memory , Jurkat Cells , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Oncogenes , Papilloma/pathology , Papilloma/virology , Pedigree , Protein Sorting Signals , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Clin Infect Dis ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158989

ABSTRACT

PURPOSE: To identify weather variables associated with pathogens contributing to infectious conjunctivitis globally. METHODS: Sample collection and pathogen identification from patients with acute infectious conjunctivitis was performed from 2017 to 2023. We linked pathogens identified from 13 sites across 8 countries with publicly available weather data by geographic coordinates. Mixed effects logistic regression analysis was performed to estimate the associations between temperature, precipitation, and relative humidity exposures, and the prevalence of infection types (RNA virus, DNA virus, bacteria, and fungus). RESULTS: 498 cases from the United States, India, Nepal, Thailand, Burkina Faso, Niger, Vietnam, and Israel were included in the analysis. 8-day average precipitation (mm) was associated with increased odds of RNA virus infection (odds ratio (OR)=1.47, 95% confidence interval (CI): 1.12 to 1.93, P=0.01) and decreased odds of DNA infection (OR=0.62, 95% CI: 0.46 to 0.82, P<0.001). Relative humidity (%) was associated with increased odds of RNA virus infections (OR=2.64, 95% CI: 1.51 to 4.61, P<0.001), and fungal infections (OR=2.35, 95% CI: 1.19 to 4.66, P=0.01), but decreased odds of DNA virus (OR=0.58, 95%CI: 0.37 to 0.90, P=0.02) and bacterial infections (OR=0.42, 95% CI: 0.25 to 0.71, P<0.001). Temperature (°C) was not associated with ocular infections for any pathogen type. CONCLUSIONS: This study suggests that weather factors affect pathogens differently. Particularly, humidity and precipitation were predictors for pathogens contributing to conjunctivitis worldwide. Additional work is needed to clarify the effects of shifts in weather and environmental factors on ocular infectious diseases.

3.
Optom Vis Sci ; 100(4): 276-280, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36880993

ABSTRACT

SIGNIFICANCE: Acute infectious conjunctivitis poses significant challenges to eye care providers. It can be highly transmissible, and because etiology is often presumed, correct treatment and management can be difficult. This study uses unbiased deep sequencing to identify causative pathogens of infectious conjunctivitis, potentially allowing for improved approaches to diagnosis and management. PURPOSES: This study aimed to identify associated pathogens of acute infectious conjunctivitis in a single ambulatory eye care center. CASE REPORTS: This study included patients who presented to the University of California Berkeley eye center with signs and symptoms suggestive of infectious conjunctivitis. From December 2021 to July 2021, samples were collected from seven subjects (ages ranging from 18 to 38). Deep sequencing identified associated pathogens in five of seven samples, including human adenovirus D, Haemophilus influenzae , Chlamydia trachomatis , and human coronavirus 229E. CONCLUSIONS: Unbiased deep sequencing identified some unexpected pathogens in subjects with acute infectious conjunctivitis. Human adenovirus D was recovered from only one patient in this series. Although all samples were obtained during the COVID-19 pandemic, only one case of human coronavirus 229E and no SARS-CoV-2 were identified.


Subject(s)
COVID-19 , Conjunctivitis , Humans , Acute Disease , California/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing , Pandemics
4.
J Fluoresc ; 32(2): 449-471, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35064386

ABSTRACT

Carbon quantum dots (CQDs) have emerged as one of the most promising nanomaterials in the carbon nanostructures family in recent years due to their low toxicity, simple synthetic methods, unique fluorescence emission, good photostability, excellent water solubility, high specific surface areas and outstanding electronic properties. They have thus been employed in a wide range of applications, including fluorescent sensing, electrochemical sensing, bioimaging, drug delivery, antimicrobial studies, antioxidants, and photocatalysis. CQDs drawn great interest in sensing applications due to their unique photochemical, electrochemical and electrochemiluminescence properties. They exhibit excitation wavelength-dependent or -independent photoluminescence (PL) behaviour, high quantum yield, and promising binding ability with analytes, which make them an ideal candidate for use in PL based sensing platforms. Excessive use of agrochemicals in farm fields can pollute the environment and have potentially adverse health effects on aquatic and human life. Since there are very few monitoring techniques are available for sensing such harmful substances, there is an urgent need to develop a sensor for the facile, rapid and on-site detection and quantification of agrochemical residues in the environment. Several CQD-based fluorophores for detecting agrochemical residues employing static or dynamic quenching processes have recently been published. The key quenching mechanisms involved in the sensing process include FRET, PET and IFE. The first part of this review intends to provide a comprehensive overview of various techniques to characterize CQDs such as UV-vis., FT-IR, PL, XRD, NMR, TEM, TGA, XPS and Raman analysis. In addition application of CQDs as fluorescent sensors for agrochemical residue in different media are summarized in this reiew. The LOD values and rapid action of the sensor demonstrates significant advantages of these methods over conventional analytical procedures.


Subject(s)
Agrochemicals/analysis , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes , Luminescent Measurements , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermogravimetry , X-Ray Diffraction
5.
Anal Bioanal Chem ; 414(17): 4935-4951, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35579676

ABSTRACT

A novel carbon dot (CD) was synthesized through the facile and simple hydrothermal method from Curcuma amada, as the precursor for the first time. These CDs with an average diameter of 4.6 nm display blue fluorescence, with excitation/emission maxima at 360/445 nm and a quantum yield of 14.1%. It exhibited high stability under different conditions and was characterized using various techniques. These CDs can be employed as a dual-sensing platform to detect tetracyclines and fluoroquinolones, two antibiotic classes. Even though antibiotics are regarded as an inevitable commodity, overuse and improper management of discarded antibiotics pose a severe threat to the environment. Herein, we developed a dual-sensing, biocompatible sensor with high selectivity and sensitivity to detect antibiotics. CD was employed as a fluorescence probe and detected tetracycline and fluoroquinolone antibiotic through inner filter effect-based fluorescence quenching and hydrogen bonding-based enhancement process, respectively. The linear range was 0-16 µM and the detection limit was 33 nM for tetracycline and 2 nM for fluoroquinolone antibiotic. As an electrochemical probe, CD selectively detected tetracycline with a lower detection limit of 0.5 nM over a linear range of 0-16 µM. Using both methods, a real sample analysis of the developed sensor exhibited accurate reliability and precision.


Subject(s)
Quantum Dots , Tetracyclines , Anti-Bacterial Agents , Biomass , Carbon/chemistry , Fluorescent Dyes/chemistry , Fluoroquinolones , Quantum Dots/chemistry , Reproducibility of Results , Spectrometry, Fluorescence/methods , Tetracycline , Tetracyclines/analysis
7.
J Virol ; 91(2)2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27847362

ABSTRACT

The UL16 tegument protein of herpes simplex virus 1 (HSV-1) is conserved among all herpesviruses and plays many roles during replication. This protein has an N-terminal domain (NTD) that has been shown to bind to several viral proteins, including UL11, VP22, and glycoprotein E, and these interactions are negatively regulated by a C-terminal domain (CTD). Thus, in pairwise transfections, UL16 binding is enabled only when the CTD is absent or altered. Based on these results, we hypothesized that direct interactions occur between the NTD and the CTD. Here we report that the separated and coexpressed functional domains of UL16 are mutually responsive to each other in transfected cells and form complexes that are stable enough to be captured in coimmunoprecipitation assays. Moreover, we found that the CTD can associate with itself. To our surprise, the CTD was also found to contain a novel and intrinsic ability to localize to specific spots on mitochondria in transfected cells. Subsequent analyses of HSV-infected cells by immunogold electron microscopy and live-cell confocal imaging revealed a population of UL16 that does not merely accumulate on mitochondria but in fact makes dynamic contacts with these organelles in a time-dependent manner. These findings suggest that the domain interactions of UL16 serve to regulate not just the interaction of this tegument protein with its viral binding partners but also its interactions with mitochondria. The purpose of this novel interaction remains to be determined. IMPORTANCE: The HSV-1-encoded tegument protein UL16 is involved in multiple events of the virus replication cycle, ranging from virus assembly to cell-cell spread of the virus, and hence it can serve as an important drug target. Unfortunately, a lack of both structural and functional information limits our understanding of this protein. The discovery of domain interactions within UL16 and the novel ability of UL16 to interact with mitochondria in HSV-infected cells lays a foundational framework for future investigations aimed at deciphering the structure and function of not just UL16 of HSV-1 but also its homologs in other herpesviruses.


Subject(s)
Herpesvirus 1, Human/physiology , Protein Interaction Domains and Motifs , Viral Proteins/metabolism , Amino Acid Substitution , Animals , Binding Sites , Cell Line , Herpes Simplex/virology , Humans , Mitochondria/metabolism , Mitochondrial Dynamics , Myristic Acid/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Transport , Sequence Deletion , Viral Proteins/chemistry , Viral Proteins/genetics
8.
J Biol Chem ; 291(47): 24449-24464, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27694440

ABSTRACT

Transient receptor potential melastatin 2 (TRPM2) ion channel has an essential function in modulating cell survival following oxidant injury and is highly expressed in many cancers including neuroblastoma. Here, in xenografts generated from neuroblastoma cells in which TRPM2 was depleted with CRISPR/Cas9 technology and in in vitro experiments, tumor growth was significantly inhibited and doxorubicin sensitivity increased. The hypoxia-inducible transcription factor 1/2α (HIF-1/2α) signaling cascade including proteins involved in oxidant stress, glycolysis, and mitochondrial function was suppressed by TRPM2 depletion. TRPM2-depleted SH-SY5Y neuroblastoma cells demonstrated reduced oxygen consumption and ATP production after doxorubicin, confirming impaired cellular bioenergetics. In cells in which TRPM2 was depleted, mitochondrial superoxide production was significantly increased, particularly following doxorubicin. Ectopic expression of superoxide dismutase 2 (SOD2) reduced ROS and preserved viability of TRPM2-depleted cells, however, failed to restore ATP levels. Mitochondrial reactive oxygen species (ROS) were also significantly increased in cells in which TRPM2 function was inhibited by TRPM2-S, and pretreatment of these cells with the antioxidant MitoTEMPO significantly reduced ROS levels in response to doxorubicin and protected cell viability. Expression of the TRPM2 pore mutant E960D, in which calcium entry through TRPM2 is abolished, also resulted in significantly increased mitochondrial ROS following doxorubicin treatment, showing the critical role of TRPM2-mediated calcium entry. These findings demonstrate the important function of TRPM2 in modulation of cell survival through mitochondrial ROS, and the potential of targeted inhibition of TRPM2 as a therapeutic approach to reduce cellular bioenergetics, tumor growth, and enhance susceptibility to chemotherapeutic agents.


Subject(s)
Calcium Signaling , Glycolysis , Mitochondria/metabolism , Neoplasm Proteins/metabolism , Neuroblastoma/metabolism , Reactive Oxygen Species/metabolism , TRPM Cation Channels/metabolism , Amino Acid Substitution , Calcium , Cell Line, Tumor , Cell Survival , Gene Deletion , Humans , Mitochondria/genetics , Mitochondria/pathology , Mutation, Missense , Neoplasm Proteins/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , TRPM Cation Channels/genetics
9.
J Immunol ; 194(9): 4130-43, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25801429

ABSTRACT

Signaling lymphocyte activation molecules (SLAMs) play an integral role in immune regulation. Polymorphisms in the SLAM family receptors are implicated in human and mouse model of lupus disease. The lupus-associated, somatically mutated, and class-switched pathogenic autoantibodies are generated in spontaneously developed germinal centers (GCs) in secondary lymphoid organs. The role and mechanism of B cell-intrinsic expression of polymorphic SLAM receptors that affect B cell tolerance at the GC checkpoint are not clear. In this study, we generated several bacterial artificial chromosome-transgenic mice that overexpress C57BL/6 (B6) alleles of different SLAM family genes on an autoimmune-prone B6.Sle1b background. B6.Sle1b mice overexpressing B6-derived Ly108 and CD84 exhibit a significant reduction in the spontaneously developed GC response and autoantibody production compared with B6.Sle1b mice. These data suggest a prominent role for Sle1b-derived Ly108 and CD84 in altering the GC checkpoint. We further confirm that expression of lupus-associated CD84 and Ly108 specifically on GC B cells in B6.Sle1b mice is sufficient to break B cell tolerance, leading to an increase in autoantibody production. In addition, we observe that B6.Sle1b B cells have reduced BCR signaling and a lower frequency of B cell-T cell conjugates; the reverse is seen in B6.Sle1b mice overexpressing B6 alleles of CD84 and Ly108. Finally, we find a significant decrease in apoptotic GC B cells in B6.Sle1b mice compared with B6 controls. Our study establishes a central role for GC B cell-specific CD84 and Ly108 expression in maintaining B cell tolerance in GCs and in preventing autoimmunity.


Subject(s)
Antigens, CD/immunology , Antigens, Ly/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Immune Tolerance/immunology , Animals , Antigens, CD/genetics , Antigens, Ly/genetics , Female , Germinal Center/cytology , Mice , Mice, Inbred Strains , Mice, Transgenic , Signaling Lymphocytic Activation Molecule Family
10.
Nanomedicine ; 13(7): 2313-2324, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28673852

ABSTRACT

Drug resistant cancers like pancreatic ductal adenocarcinoma (PDAC) are difficult to treat, and nanoparticle drug delivery systems can overcome some of the limitations of conventional systemic chemotherapy. In this study, we demonstrate that FdUMP and dFdCMP, the bioactive, phosphorylated metabolites of the chemotherapy drugs 5-FU and gemcitabine, can be encapsulated into calcium phosphosilicate nanoparticles (CPSNPs). The non-phosphorylated drug analogs were not well encapsulated by CPSNPs, suggesting the phosphate modification is essential for effective encapsulation. In vitro proliferation assays, cell cycle analyses and/or thymidylate synthase inhibition assays verified that CPSNP-encapsulated phospho-drugs retained biological activity. Analysis of orthotopic tumors from mice treated systemically with tumor-targeted FdUMP-CPSNPs confirmed the in vivo up take of these particles by PDAC tumor cells and release of active drug cargos intracellularly. These findings demonstrate a novel methodology to efficiently encapsulate chemotherapeutic agents into the CPSNPs and to effectively deliver them to pancreatic tumor cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Calcium Compounds/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Deoxycytidine/analogs & derivatives , Fluorouracil/administration & dosage , Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Silicates/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/administration & dosage , Deoxycytidine/chemistry , Deoxycytidine/therapeutic use , Drug Carriers/chemistry , Drug Delivery Systems , Fluorouracil/analogs & derivatives , Fluorouracil/therapeutic use , Humans , Male , Mice , Mice, Nude , Nanoparticles/ultrastructure , Phosphorylation , Xenograft Model Antitumor Assays , Gemcitabine
11.
Euro Surveill ; 21(14)2016.
Article in English | MEDLINE | ID: mdl-27103616

ABSTRACT

Risk communication has been identified as a core competence for guiding public health responses to infectious disease threats. The International Health Regulations (2005) call for all countries to build capacity and a comprehensive understanding of health risks before a public health emergency to allow systematic and coherent communication, response and management. Research studies indicate that while outbreak and crisis communication concepts and tools have long been on the agenda of public health officials, there is still a need to clarify and integrate risk communication concepts into more standardised practices and improve risk communication and health, particularly among disadvantaged populations. To address these challenges, the European Centre for Disease Prevention and Control (ECDC) convened a group of risk communication experts to review and integrate existing approaches and emerging concepts in the development of a training curriculum. This curriculum articulates a new approach in risk communication moving beyond information conveyance to knowledge- and relationship-building. In a pilot training this approach was reflected both in the topics addressed and in the methods applied. This article introduces the new conceptual approach to risk communication capacity building that emerged from this process, presents the pilot training approach developed, and shares the results of the course evaluation.


Subject(s)
Curriculum/standards , Infection Control/standards , Professional Competence/standards , Public Health/education , Communication , Disease Management , Humans
12.
J Biol Chem ; 289(52): 36284-302, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25391657

ABSTRACT

The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neuroblastoma/metabolism , TRPM Cation Channels/physiology , Adrenal Glands/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Autophagy , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Down-Regulation , Doxorubicin/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Membrane Potential, Mitochondrial , Membrane Potentials , Mice, Nude , Neoplasm Transplantation , Neuroblastoma/pathology , Protein Isoforms/physiology , Protein Transport , Tumor Burden
13.
Biochim Biophys Acta ; 1838(5): 1420-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24388950

ABSTRACT

GS10 [cyclo-(VKLdYPVKLdYP)] is a synthetic analog of the naturally occurring antimicrobial peptide gramicidin (GS) in which the two positively charged ornithine (Orn) residues are replaced by two positively charged lysine (Lys) residues and the two less polar aromatic phenylalanine (Phe) residues are replaced by the more polar tyrosine (Tyr) residues. In this study, we examine the effects of these seemingly conservative modifications to the parent GS molecule on the physical properties of the peptide, and on its interactions with lipid bilayer model and biological membranes, by a variety of biophysical techniques. We show that although GS10 retains the largely ß-sheet conformation characteristic of GS, it is less structured in both water and membrane-mimetic solvents. GS10 is also more water soluble and less hydrophobic than GS, as predicted, and also exhibits a reduced tendency for self-association in aqueous solution. Surprisingly, GS10 associates more strongly with zwitterionic and anionic phospholipid bilayer model membranes than does GS, despite its greater water solubility, and the presence of anionic phospholipids and cholesterol (Chol) modestly reduces the association of both GS10 and GS to these model membranes. The strong partitioning of both peptides into lipid bilayers is driven by a large favorable entropy change opposed by a much smaller unfavorable enthalpy change. However, GS10 is also less potent than GS at inducing inverted cubic phases in phospholipid bilayer model membranes and at inhibiting the growth of the cell wall-less bacterium Acholeplasma laidlawii B. These results are discussed in terms of the comparative antibiotic and hemolytic activities of these peptides.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Gramicidin/chemistry , Gramicidin/pharmacology , Membrane Lipids/metabolism , Peptides/chemistry , Peptides/pharmacology , Acholeplasma laidlawii/drug effects , Cell Membrane/metabolism , Cholesterol/metabolism , Lipid Bilayers/metabolism , Models, Biological , Phospholipids/metabolism , Protein Structure, Secondary , Solubility , Structure-Activity Relationship , Thermodynamics , Water/chemistry , Water/metabolism
14.
Circulation ; 129(15): 1551-9, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24481950

ABSTRACT

BACKGROUND: Intimal smooth muscle cells (SMCs) contribute to the foam cell population in arterial plaque, and express lower levels of the cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) in comparison with medial arterial SMCs. The relative contribution of SMCs to the total foam cell population and their expression of ABCA1 in comparison with intimal monocyte-derived macrophages, however, are unknown. Although the expression of macrophage markers by SMCs following lipid loading has been described, the relevance of this phenotypic switch by SMCs in human coronary atherosclerosis has not been determined. METHODS AND RESULTS: Human coronary artery sections from hearts explanted at the time of transplantation were processed to clearly delineate intracellular and extracellular lipids and allow costaining for cell-specific markers. Costaining for oil red O and the SMC-specific marker SM α-actin of foam cell-rich lesions revealed that 50±7% (average±standard error of the mean, n=14 subjects) of total foam cells were SMC derived. ABCA1 expression by intimal SMCs was significantly reduced between early and advanced atherosclerotic lesions, with no loss in ABCA1 expression by myeloid lineage cells. Costaining with the macrophage marker CD68 and SM α-actin revealed that 40±6% (n=15) of CD68-positive cells originated as SMCs in advanced human coronary atherosclerosis. CONCLUSIONS: These findings suggest SMCs contain a much larger burden of the excess cholesterol in human coronary atherosclerosis than previously known, in part, because of their relative inability to release excess cholesterol via ABCA1 in comparison with myeloid lineage cells. Our results also indicate that many cells identified as monocyte-derived macrophages in human atherosclerosis are in fact SMC derived.


Subject(s)
Cholesterol/metabolism , Coronary Artery Disease/metabolism , Coronary Vessels/metabolism , Foam Cells/metabolism , Macrophages/metabolism , Muscle, Smooth, Vascular/metabolism , ATP Binding Cassette Transporter 1/metabolism , Actins/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers/metabolism , Cell Lineage/physiology , Coronary Vessels/cytology , Foam Cells/cytology , Humans , In Vitro Techniques , Macrophages/cytology , Muscle, Smooth, Vascular/cytology , Myeloid Cells/cytology , Myeloid Cells/metabolism , Tunica Intima/cytology , Tunica Intima/metabolism
15.
PLoS Pathog ; 8(11): e1003014, 2012.
Article in English | MEDLINE | ID: mdl-23144619

ABSTRACT

Progressive multifocal leukoencephalopathy (PML) induced by JC virus (JCV) is a risk for natalizumab-treated multiple sclerosis (MS) patients. Here we characterize the JCV-specific T cell responses in healthy donors and natalizumab-treated MS patients to reveal functional differences that may account for the development of natalizumab-associated PML. CD4 and CD8 T cell responses specific for all JCV proteins were readily identified in MS patients and healthy volunteers. The magnitude and quality of responses to JCV and cytomegalovirus (CMV) did not change from baseline through several months of natalizumab therapy. However, the frequency of T cells producing IL-10 upon mitogenic stimulation transiently increased after the first dose. In addition, MS patients with natalizumab-associated PML were distinguished from all other subjects in that they either had no detectable JCV-specific T cell response or had JCV-specific CD4 T cell responses uniquely dominated by IL-10 production. Additionally, IL-10 levels were higher in the CSF of individuals with recently diagnosed PML. Thus, natalizumab-treated MS patients with PML have absent or aberrant JCV-specific T cell responses compared with non-PML patients, and changes in T cell-mediated control of JCV replication may be a risk factor for developing PML. Our data suggest further approaches to improved monitoring, treatment and prevention of PML in natalizumab-treated patients.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular/drug effects , JC Virus/immunology , Leukoencephalopathy, Progressive Multifocal/immunology , Multiple Sclerosis/immunology , Antibodies, Monoclonal, Humanized/adverse effects , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Cytomegalovirus/immunology , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/pathology , Female , Humans , Interleukin-10/immunology , Leukoencephalopathy, Progressive Multifocal/drug therapy , Leukoencephalopathy, Progressive Multifocal/pathology , Leukoencephalopathy, Progressive Multifocal/virology , Male , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Multiple Sclerosis/virology , Natalizumab , Risk Factors
16.
Ear Nose Throat J ; : 1455613241255730, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804662

ABSTRACT

Background: The study aimed to identify data-driven body mass index (BMI) thresholds that are associated with varying risk of 30 day complications following adult tonsillectomy. Methods: The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was utilized to conduct a retrospective cohort analysis of patients undergoing adult tonsillectomy from 2005 to 2019. Stratum-specific likelihood ratio (SSLR) analysis was conducted to determine data-driven BMI strata that maximized the likelihood of 30 day complications following adult tonsillectomy. Patient demographics and clinical comorbidities were compared using chi-squared analysis and student t tests, where appropriate, for each stratum. Multivariable regression analysis was conducted to confirm association between identified data-driven strata with 30 day complication rates. Results: In total, 44,161 patients undergoing adult tonsillectomy were included in this study. SSLR analysis identified 2 BMI categories: 18 to 45 and 46+. Relative to the 18 to 45 BMI cohort, the 46+ BMI cohort was more likely to have 30 day all-cause complications after surgery [odds ratio (OR): 1.62, P = .007]. Specifically, the 46+ BMI cohort had significantly higher odds for 30 day major medical complications (OR: 2.86, P = .001), pulmonary domain complications (OR: 1.86, P = .041), unplanned reintubation (OR: 2.65, P = .033), and deep vein thrombosis (OR: 6.54, P = .026). Conclusions: We identified a BMI threshold of 46+ that was associated with a significantly increased risk of 30 day all-cause complications following adult tonsillectomy. These BMI strata can guide preoperative planning and risk-stratifying models for predicting 30 day complications in tonsillectomy surgery.

17.
Cornea ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771726

ABSTRACT

PURPOSE: The purpose of this study was to identify conjunctival transcriptome differences in patients with Acanthamoeba keratitis compared with keratitis with no known associated pathogen. METHODS: The host conjunctival transcriptome of 9 patients with Acanthamoeba keratitis (AK) is compared with the host conjunctival transcriptome of 13 patients with pathogen-free keratitis. Culture and/or confocal confirmed Acanthamoeba in 8 of 9 participants with AK who underwent metagenomic RNA sequencing as the likely pathogen. Cultures were negative in all 13 cases where metagenomic RNA sequencing did not identify a pathogen. RESULTS: Transcriptome analysis identified 36 genes differently expressed between patients with AK and patients with presumed sterile, or pathogen-free, keratitis. Gene enrichment analysis revealed that some of these genes participate in several biologic pathways important for cellular signaling, ion transport and homeostasis, glucose transport, and mitochondrial metabolism. Notable relatively differentially expressed genes with potential relevance to Acanthamoeba infection included CPS1, SLC35B4, STEAP2, ATP2B2, NMNAT3, and AKAP12. CONCLUSIONS: This research suggests that the local transcriptome in Acanthamoeba keratitis may be sufficiently robust to be detected in the conjunctiva and that corneas infected with Acanthamoeba may be distinguished from the inflamed cornea where no pathogen was identified. Given the low sensitivity for corneal cultures, identification of differentially expressed genes may serve as a suggestive transcriptional signature allowing for a complementary diagnostic technique to identify this blinding parasite. Knowledge of differentially expressed genes may also direct investigation of disease pathophysiology and suggest novel pathways for therapeutic targets.

18.
Biomedicines ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790986

ABSTRACT

The poor prognosis for pancreatic ductal adenocarcinoma (PDAC) patients is due in part to the highly fibrotic nature of the tumors that impedes delivery of therapeutics, including nanoparticles (NPs). Our prior studies demonstrated that proglumide, a cholecystokinin receptor (CCKR) antagonist, reduced fibrosis pervading PanIN lesions in mice. Here, we further detail how the reduced fibrosis elicited by proglumide achieves the normalization of the desmoplastic tumor microenvironment (TME) and improves nanoparticle uptake. One week following the orthotopic injection of PDAC cells, mice were randomized to normal or proglumide-treated water for 3-6 weeks. Tumors were analyzed ex vivo for fibrosis, vascularity, stellate cell activation, vascular patency, and nanoparticle distribution. The histological staining and three-dimensional imaging of tumors each indicated a reduction in stromal collagen in proglumide-treated mice. Proglumide treatment increased tumor vascularity and decreased the activation of cancer-associated fibroblasts (CAFs). Additionally, PANC-1 cells with the shRNA-mediated knockdown of the CCK2 receptor showed an even greater reduction in collagen, indicating the CCK2 receptors on tumor cells contribute to the desmoplastic TME. Proglumide-mediated reduction in fibrosis also led to functional changes in the TME as evidenced by the enhanced intra-tumoral distribution of small (<12 nm) Rhodamine-loaded nanoparticles. The documented in vivo, tumor cell-intrinsic anti-fibrotic effects of CCK2R blockade in both an immunocompetent syngeneic murine PDAC model as well as a human PDAC xenograft model demonstrates that CCK2R antagonists, such as proglumide, can improve the delivery of nano-encapsulated therapeutics or imaging agents to pancreatic tumors.

19.
Am J Trop Med Hyg ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013379

ABSTRACT

Infectious keratitis is a leading cause of corneal blindness worldwide with little information known about causative etiologies in Malawi, Africa. This area is resource-limited with ophthalmologist and microbiology services. The Department of Ophthalmology at the Kamuzu College of Health Sciences in Blantyre, Malawi, is a participating site of an international corneal ulcer consortium, capriCORN (Comprehensive Analysis of Pathogens, Resistomes, and Inflammatory-markers in the CORNea). In this study, 50 patients with corneal ulcers were swabbed for pathogen identification using RNA-sequencing. Corneal trauma was reported in 41% and 19% of the patients worked in agriculture. A pathogen was identified in 58% of the cases. Fungal pathogens predominated, followed by viruses and bacteria. Aspergillus, Fusarium, HSV-1, and Gardnerella were the most common pathogens detected. 50% of patients reported treatment with an antibiotic before presentation. Pathogens unusual for infectious keratitis, such as Subramaniula asteroids, Aureobasidium pullulans, and Gardnerella vaginalis, were also detected.

20.
Int J Infect Dis ; 146: 107133, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876162

ABSTRACT

OBJECTIVES: To determine the associated pathogen during the 2023 conjunctivitis outbreak in Vietnam METHODS: RNA-sequencing was used to identify pathogens before and during the outbreak. RESULTS: 24 patients with infectious conjunctivitis between March and October 2023 from Hai Yen Vision Institute in Vietnam were swabbed. Coxsackievirus A24v was the most common pathogen identified. Phylogenetic analysis of these strains demonstrates similarities to the Coxsackievirus identified in the 2022 India outbreak. Human adenovirus D was also circulating. Ocular findings of tearing, purulence, and itching were common in this outbreak. CONCLUSIONS: Multiple viruses can co-circulate during conjunctivitis outbreaks. Hemorrhagic conjunctivitis, commonly associated with coxsackievirus conjunctivitis, was not a common clinical sign in this outbreak. Repeat genetic surveillance, with the notable inclusion of RNA virus detection strategies, is important for outbreak detection.


Subject(s)
Coxsackievirus Infections , Disease Outbreaks , Phylogeny , Humans , Vietnam/epidemiology , Coxsackievirus Infections/epidemiology , Coxsackievirus Infections/virology , Male , Female , Adult , Middle Aged , Young Adult , Child , Adolescent , Child, Preschool , Conjunctivitis, Viral/epidemiology , Conjunctivitis, Viral/virology , Conjunctivitis, Acute Hemorrhagic/epidemiology , Conjunctivitis, Acute Hemorrhagic/virology
SELECTION OF CITATIONS
SEARCH DETAIL