Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
EMBO J ; 38(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30796050

ABSTRACT

Telomeres, the protective ends of eukaryotic chromosomes, are replicated through concerted actions of conventional DNA polymerases and elongated by telomerase, but the regulation of this process is not fully understood. Telomere replication requires (Ctc1/Cdc13)-Stn1-Ten1, a telomeric ssDNA-binding complex homologous to RPA Here, we show that the evolutionarily conserved phosphatase Ssu72 is responsible for terminating the cycle of telomere replication in fission yeast. Ssu72 controls the recruitment of Stn1 to telomeres by regulating Stn1 phosphorylation at Ser74, a residue located within its conserved OB-fold domain. Consequently, ssu72∆ mutants are defective in telomere replication and exhibit long 3'-ssDNA overhangs, indicative of defective lagging-strand DNA synthesis. We also show that hSSU72 regulates telomerase activation in human cells by controlling recruitment of hSTN1 to telomeres. These results reveal a previously unknown yet conserved role for the phosphatase SSU72, whereby this enzyme controls telomere homeostasis by activating lagging-strand DNA synthesis, thus terminating the cycle of telomere replication.


Subject(s)
DNA Replication , Evolution, Molecular , Phosphoprotein Phosphatases/genetics , Phosphoric Monoester Hydrolases/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Telomere Homeostasis , Telomere/genetics , Amino Acid Sequence , Carrier Proteins/genetics , Conserved Sequence , Humans , Phosphorylation , Schizosaccharomyces/enzymology , Sequence Homology
2.
Plant Cell ; 31(10): 2525-2539, 2019 10.
Article in English | MEDLINE | ID: mdl-31363039

ABSTRACT

Evolution of the C4 photosynthetic pathway involved in some cases recruitment of housekeeping proteins through gene duplication and their further neofunctionalization. NADP-malic enzyme (ME), the most widespread C4 decarboxylase, has increased its catalytic efficiency and acquired regulatory properties that allowed it to participate in the C4 pathway. Here, we show that regulation of maize (Zea mays) C4-NADP-ME activity is much more elaborate than previously thought. Using mass spectrometry, we identified phosphorylation of the Ser419 residue of C4-NADP-ME in protein extracts of maize leaves. The phosphorylation event increases in the light, with a peak at Zeitgeber time 2. Phosphorylation of ZmC4-NADP-ME drastically decreases its activity as shown by the low residual activity of the recombinant phosphomimetic mutant. Analysis of the crystal structure of C4-NADP-ME indicated that Ser419 is involved in the binding of NADP at the active site. Molecular dynamics simulations and effective binding energy computations indicate a less favorable binding of the cofactor NADP in the phosphomimetic and the phosphorylated variants. We propose that phosphorylation of ZmC4-NADP-ME at Ser419 during the first hours in the light is a cellular mechanism that fine tunes the enzymatic activity to coordinate the carbon concentration mechanism with the CO2 fixation rate, probably to avoid CO2 leakiness from bundle sheath cells.


Subject(s)
Malate Dehydrogenase/chemistry , Malate Dehydrogenase/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Zea mays/enzymology , Biomimetics , Gene Expression , Kinetics , Light , Malate Dehydrogenase/genetics , Mass Spectrometry , Molecular Dynamics Simulation , Mutation , NADP/chemistry , NADP/metabolism , Phosphorylation/radiation effects , Photosynthesis/genetics , Photosynthesis/radiation effects , Plant Leaves/chemistry , Plant Proteins/metabolism , Protein Processing, Post-Translational/radiation effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Zea mays/radiation effects
3.
J Exp Bot ; 72(12): 4190-4201, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33787877

ABSTRACT

Calcium-dependent protein kinases (CDPKs) play essential roles in plant development and stress responses. CDPKs have a conserved kinase domain, followed by an auto-inhibitory junction connected to the calmodulin-like domain that binds Ca2+. These structural features allow CDPKs to decode the dynamic changes in cytoplasmic Ca2+ concentrations triggered by hormones and by biotic and abiotic stresses. In response to these signals, CDPKs phosphorylate downstream protein targets to regulate growth and stress responses according to the environmental and developmental circumstances. The latest advances in our understanding of the metabolic, transcriptional, and protein-protein interaction networks involving CDPKs suggest that they have a direct influence on plant carbon/nitrogen (C/N) balance. In this review, we discuss how CDPKs could be key signaling nodes connecting stress responses with metabolic homeostasis, and acting together with the sugar and nutrient signaling hubs SnRK1, HXK1, and TOR to improve plant fitness.


Subject(s)
Carbon , Protein Kinases , Nitrogen , Plant Development
5.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 231-246, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29100789

ABSTRACT

Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family.


Subject(s)
Alternative Splicing/physiology , Cold Shock Proteins and Peptides , Oryza , Plant Proteins , Protein Kinases , Calcium/metabolism , Cold Shock Proteins and Peptides/chemistry , Cold Shock Proteins and Peptides/genetics , Cold Shock Proteins and Peptides/metabolism , Oryza/enzymology , Oryza/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism
6.
Mol Biol Evol ; 35(7): 1690-1705, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29659975

ABSTRACT

C4 photosynthesis has evolved repeatedly from the ancestral C3 state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialized form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C4 cycle is accomplished through cell-type-specific accumulation of enzymes but cis-elements and transcription factors controlling C4 photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we tested whether mechanisms impacting on transcription in C4 plants evolved from ancestral components found in C3 species. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C4NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C3 and C4 Panicoid grass species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C3 state. We conclude that C4 photosynthesis has co-opted an ancient C3 regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C4 photosynthesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Malate Dehydrogenase/genetics , Zea mays/metabolism , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Zea mays/genetics
7.
BMC Plant Biol ; 18(1): 349, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30541427

ABSTRACT

BACKGROUND: SUMOylation is an essential eukaryotic post-translation modification that, in plants, regulates numerous cellular processes, ranging from seed development to stress response. Using rice as a model crop plant, we searched for potential regulatory points that may influence the activity of the rice SUMOylation machinery genes. RESULTS: We analyzed the presence of putative cis-acting regulatory elements (CREs) within the promoter regions of the rice SUMOylation machinery genes and found CREs related to different cellular processes, including hormone signaling. We confirmed that the transcript levels of genes involved in target-SUMOylation, containing ABA- and GA-related CREs, are responsive to treatments with these hormones. Transcriptional analysis in Nipponbare (spp. japonica) and LC-93-4 (spp. indica), showed that the transcript levels of all studied genes are maintained in the two subspecies, under normal growth. OsSUMO3 is an exceptional case since it is expressed at low levels or is not detectable at all in LC-93-4 roots and shoots, respectively. We revealed post-transcriptional regulation by alternative splicing (AS) for all genes studied, except for SUMO coding genes, OsSIZ2, OsOTS3, and OsELS2. Some AS forms have the potential to alter protein domains and catalytic centers. We also performed the molecular and phenotypic characterization of T-DNA insertion lines of some of the genes under study. Knockouts of OsFUG1 and OsELS1 showed increased SUMOylation levels and non-overlapping phenotypes. The fug1 line showed a dwarf phenotype, and significant defects in fertility, seed weight, and panicle architecture, while the els1 line showed early flowering and decreased plant height. We suggest that OsELS1 is an ortholog of AtEsd4, which was also supported by our phylogenetic analysis. CONCLUSIONS: Overall, we provide a comprehensive analysis of the rice SUMOylation machinery and discuss possible effects of the regulation of these genes at the transcriptional and post-transcriptional level. We also contribute to the characterization of two rice SUMO proteases, OsELS1 and OsFUG1.


Subject(s)
Gene Expression Regulation, Plant , Oryza/metabolism , Sumoylation , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Oryza/enzymology , Oryza/genetics , Peptide Hydrolases/metabolism , Phylogeny , Plant Proteins/genetics , SUMO-1 Protein/genetics , Sumoylation/genetics
8.
Biochim Biophys Acta ; 1859(2): 393-404, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26732823

ABSTRACT

DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.


Subject(s)
Arabidopsis Proteins/genetics , Oryza/genetics , Phytochrome B/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Amino Acid Sequence/genetics , Arabidopsis Proteins/metabolism , Cold Temperature , DNA-Binding Proteins/genetics , Droughts , Gene Expression Regulation, Plant , Oryza/physiology , Phytochrome B/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/metabolism
9.
Plant Cell Environ ; 40(7): 1197-1213, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28102545

ABSTRACT

Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.


Subject(s)
Cold-Shock Response/physiology , Glucosyltransferases/metabolism , Oryza/physiology , Plant Proteins/metabolism , Protein Kinases/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Phosphorylation , Plant Proteins/genetics , Plants, Genetically Modified , Seeds/growth & development , Seeds/metabolism
10.
Biochim Biophys Acta ; 1852(9): 1950-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26073430

ABSTRACT

BACKGROUND: Machado-Joseph Disease (MJD), a form of dominantly inherited ataxia belonging to the group of polyQ expansion neurodegenerative disorders, occurs when a threshold value for the number of glutamines in Ataxin-3 (Atx3) polyglutamine region is exceeded. As a result of its modular multidomain architecture, Atx3 is known to engage in multiple macromolecular interactions, which might be unbalanced when the polyQ tract is expanded, culminating in the aggregation and formation of intracellular inclusions, a unifying fingerprint of this group of neurodegenerative disorders. Since aggregation is specific to certain brain regions, localization-dependent posttranslational modifications that differentially affect Atx3 might also contribute for MJD. METHODS: We combined in vitro and cellular approaches to address SUMOylation in the brain-predominant Atx3 isoform and assessed the impact of this posttranslational modification on Atx3 self-assembly and interaction with its native partner, p97. RESULTS: We demonstrate that Atx3 is SUMOylated at K356 both in vitro and in cells, which contributes for decreased formation of amyloid fibrils and for increased affinity towards p97. CONCLUSIONS AND GENERAL SIGNIFICANCE: These findings highlight the role of SUMOylation as a regulator of Atx3 function, with implications on Atx3 protein interaction network and self-assembly, with potential impact for further understanding the molecular mechanisms underlying MJD pathogenesis.

11.
BMC Genomics ; 15: 371, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24885229

ABSTRACT

BACKGROUND: Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. RESULTS: We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. CONCLUSIONS: This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.


Subject(s)
Expressed Sequence Tags , Quercus/genetics , Transcriptome , DNA, Plant/analysis , Gene Library , Phylogeny , Quercus/growth & development , Sequence Analysis, DNA
12.
Plant Mol Biol ; 83(4-5): 351-63, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23780733

ABSTRACT

Plants can cope with adverse environmental conditions through the activation of stress response signalling pathways, in which the proteasome seems to play an important role. However, the mechanisms underlying the proteasome-mediated stress response in rice are still not fully understood. To address this issue, we have identified a rice E3-ubiquitin ligase, OsHOS1, and characterized its role in the modulation of the cold stress response. Using a RNA interference (RNAi) transgenic approach we found that, under cold conditions, the RNAi::OsHOS1 plants showed a higher expression level of OsDREB1A. This was correlated with an increased amount of OsICE1, a master transcription factor of the cold stress signalling. However, the up-regulation of OsDREB1A was transient and the transgenic plants did not show increased cold tolerance. Nevertheless, we could confirm the interaction of OsHOS1 with OsICE1 by Yeast-Two hybrid and bi-molecular fluorescence complementation in Arabidopsis protoplasts. Moreover, we could also determine through an in vitro degradation assay that the higher amount of OsICE1 in the transgenic plants was correlated with a lower amount of OsHOS1. Hence, we could confirm the involvement of the proteasome in this response mechanism. Taken together our results confirm the importance of OsHOS1, and thus of the proteasome, in the modulation of the cold stress signalling in rice.


Subject(s)
Cold-Shock Response , Gene Expression Regulation, Enzymologic/genetics , Oryza/enzymology , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant/genetics , Gene Silencing , Molecular Sequence Data , Oryza/genetics , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA Interference , Recombinant Fusion Proteins , Sequence Alignment , Transcriptional Activation , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Up-Regulation
13.
Plant Mol Biol ; 82(4-5): 439-55, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23703395

ABSTRACT

High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.


Subject(s)
Oryza/metabolism , Transcription Factor AP-2/metabolism , Abscisic Acid/pharmacology , Droughts , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Oryza/drug effects , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Transcription Factor AP-2/genetics
14.
BMC Plant Biol ; 13: 97, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-23822194

ABSTRACT

BACKGROUND: Gene duplication events have been proposed to be involved in the adaptation of plants to stress conditions; precisely how is unclear. To address this question, we studied the evolution of two families of antiporters. Cation/proton exchangers are important for normal cell function and in plants, Na+,K+/H+ antiporters have also been implicated in salt tolerance. Two well-known plant cation/proton antiporters are NHX1 and SOS1, which perform Na+ and K+ compartmentalization into the vacuole and Na+ efflux from the cell, respectively. However, our knowledge about the evolution of NHX and SOS1 stress responsive gene families is still limited. RESULTS: In this study we performed a comprehensive molecular evolutionary analysis of the NHX and SOS1 families. Using available sequences from a total of 33 plant species, we estimated gene family phylogenies and gene duplication histories, as well as examined heterogeneous selection pressure on amino acid sites. Our results show that, while the NHX family expanded and specialized, the SOS1 family remained a low copy gene family that appears to have undergone neofunctionalization during its evolutionary history. Additionally, we found that both families are under purifying selection although SOS1 is less constrained. CONCLUSIONS: We propose that the different evolution histories are related with the proteins' function and localization, and that the NHX and SOS1 families are examples of two different evolutionary paths through which duplication events may result in adaptive evolution of stress tolerance.


Subject(s)
Antiporters/genetics , Evolution, Molecular , Multigene Family , Plant Proteins/genetics , Plants/genetics , Amino Acid Sequence , Antiporters/metabolism , Gene Duplication , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , Plants/chemistry , Plants/classification , Plants/metabolism
15.
Plant Biotechnol J ; 11(1): 87-100, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23116435

ABSTRACT

Salt stress is a complex physiological trait affecting plants by limiting growth and productivity. Rice, one of the most important food crops, is rated as salt-sensitive. High-throughput screening methods are required to exploit novel sources of genetic variation in rice and further improve salinity tolerance in breeding programmes. To search for genotypic differences related to salt stress, we genotyped 392 rice accessions by EcoTILLING. We targeted five key salt-related genes involved in mechanisms such as Na(+) /K(+) ratio equilibrium, signalling cascade and stress protection, and we found 40 new allelic variants in coding sequences. By performing association analyses using both general and mixed linear models, we identified 11 significant SNPs related to salinity. We further evaluated the putative consequences of these SNPs at the protein level using bioinformatic tools. Amongst the five nonsynonymous SNPs significantly associated with salt-stress traits, we found a T67K mutation that may cause the destabilization of one transmembrane domain in OsHKT1;5, and a P140A alteration that significantly increases the probability of OsHKT1;5 phosphorylation. The K24E mutation can putatively affect SalT interaction with other proteins thus impacting its function. Our results have uncovered allelic variants affecting salinity tolerance that may be important in breeding.


Subject(s)
Alleles , Mutation , Oryza/genetics , Oryza/metabolism , Potassium/metabolism , Salt Tolerance/genetics , Sodium/metabolism , Genes, Plant , Genetic Variation , Genotype , Salinity
16.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35098050

ABSTRACT

Calcium-Dependent Protein Kinases (CDPKs) translate calcium ion (Ca2+) signals into direct phosphorylation of proteins involved in stress response and plant growth. To get a clear picture of CDPKs functions, we must identify and explore the CDPKs targets and their respective roles in plant physiology. Here, we present a manually curated Oryza sativa L. CDPK Protein-Protein Interaction Network (CDPK-OsPPIN). The CDPK-OsPPIN provides an interactive graphical tool to assist hypothesis generation by researchers investigating CDPK roles and functional diversity.

17.
Methods Mol Biol ; 2494: 161-194, 2022.
Article in English | MEDLINE | ID: mdl-35467207

ABSTRACT

Rice (Oryza sativa L.) is the staple food for over half of the world population. However, most rice varieties are severely injured by abiotic stresses, with strong social and economic impacts. Understanding rice responses to stress may guide breeding for more tolerant varieties. However, the lack of consistency in the design of the stress experiments described in the literature limits comparative studies and output assessments. The use of identical setups is the only way to generate comparable data. This chapter comprises three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB NOVA to assess the response of rice plants to different abiotic stresses-high salinity, cold, drought, simulated drought, and submergence-and their recovery capacity when intended. All sections include a detailed description of the materials and methodology and useful notes gathered from our team experience. We use seedlings since rice plants at this stage show high sensitivity to abiotic stresses. For the salt, cold, and simulated drought (PEG, polyethylene glycol) stress assays, we grow rice seedlings in a hydroponic system, while for the drought assay, plants are grown in soil and subjected to water withholding. For submergence, we use water-filled Magenta boxes. All setups enable visual score determination and are suitable for sample collection during stress imposition and also recovery. The proposed methodologies are affordable and straightforward to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic levels.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Oryza/genetics , Plant Breeding , Seedlings/genetics , Stress, Physiological/genetics , Water
18.
Biochim Biophys Acta ; 1804(2): 263-74, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19914406

ABSTRACT

Superoxide dismutases are enzymes that function to catalytically convert superoxide radical to oxygen and hydrogen peroxide. These enzymes carry out catalysis at near diffusion controlled rate constants via a general mechanism that involves the sequential reduction and oxidation of the metal center, with the concomitant oxidation and reduction of superoxide radicals. That the catalytically active metal can be copper, iron, manganese or, recently, nickel is one of the fascinating features of this class of enzymes. In this review, we describe these enzymes in terms of the details of their catalytic properties, with an emphasis on the mechanistic differences between the enzymes. The focus here will be concentrated mainly on two of these enzymes, copper, zinc superoxide dismutase and manganese superoxide dismutase, and some relatively subtle variations in the mechanisms by which they function.


Subject(s)
Copper/metabolism , Iron/metabolism , Manganese/metabolism , Superoxide Dismutase/metabolism , Zinc/metabolism , Animals , Biocatalysis , Copper/chemistry , Humans , Iron/chemistry , Manganese/chemistry , Superoxide Dismutase/chemistry , Zinc/chemistry
20.
Front Plant Sci ; 12: 781508, 2021.
Article in English | MEDLINE | ID: mdl-35087551

ABSTRACT

Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.

SELECTION OF CITATIONS
SEARCH DETAIL