Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Appl Environ Microbiol ; 89(3): e0190122, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36853042

ABSTRACT

Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.


Subject(s)
Sinorhizobium meliloti , Symporters , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Hemin/metabolism , Iron/metabolism , Homeostasis , Cobalt/metabolism , Heme/metabolism
2.
J Exp Bot ; 73(1): 339-350, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34463334

ABSTRACT

Zinc is an essential nutrient at low concentrations, but toxic at slightly higher ones. It has been proposed that hyperaccumulator plants may use the excess zinc to fend off pathogens and herbivores. However, there is little evidence of a similar response in other plants. Here we show that Arabidopsis thaliana leaves inoculated with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM) accumulate zinc and manganese at the infection site. Zinc accumulation did not occur in a double mutant in the zinc transporters HEAVY METAL ATPASE2 and HEAVY METAL ATPASE4 (HMA2 and HMA4), which has reduced zinc translocation from roots to shoots. Consistent with a role in plant immunity, expression of HMA2 and HMA4 was up-regulated upon PcBMM inoculation, and hma2hma4 mutants were more susceptible to PcBMM infection. This phenotype was rescued upon zinc supplementation. The increased susceptibility to PcBMM infection was not due to the diminished expression of genes involved in the salicylic acid, ethylene, or jasmonate pathways since they were constitutively up-regulated in hma2hma4 plants. Our data indicate a role of zinc in resistance to PcBMM in plants containing ordinary levels of zinc. This layer of immunity runs in parallel to the already characterized defence pathways, and its removal has a direct effect on resistance to pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascomycota , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Zinc/metabolism
3.
Plant Physiol ; 184(2): 607-619, 2020 10.
Article in English | MEDLINE | ID: mdl-32764132

ABSTRACT

RNA interference (RNAi) enables flexible and dynamic interrogation of entire gene families or essential genes without the need for exogenous proteins, unlike CRISPR-Cas technology. Unfortunately, isolation of plants undergoing potent gene silencing requires laborious design, visual screening, and physical separation for downstream characterization. Here, we developed an adenine phosphoribosyltransferase (APT)-based RNAi technology (APTi) in Physcomitrella patens that improves upon the multiple limitations of current RNAi techniques. APTi exploits the prosurvival output of transiently silencing APT in the presence of 2-fluoroadenine, thereby establishing survival itself as a reporter of RNAi. To maximize the silencing efficacy of gene targets, we created vectors that facilitate insertion of any gene target sequence in tandem with the APT silencing motif. We tested the efficacy of APTi with two gene families, the actin-dependent motor, myosin XI (a,b), and the putative chitin receptor Lyk5 (a,b,c). The APTi approach resulted in a homogenous population of transient P. patens mutants specific for our gene targets with zero surviving background plants within 8 d. The observed mutants directly corresponded to a maximal 93% reduction of myosin XI protein and complete loss of chitin-induced calcium spiking in the Lyk5-RNAi background. The positive selection nature of APTi represents a fundamental improvement in RNAi technology and will contribute to the growing demand for technologies amenable to high-throughput phenotyping.


Subject(s)
Genetic Techniques , Multigene Family , RNA Interference , Adenine Phosphoribosyltransferase , Bryopsida , Genes, Plant
4.
Mol Plant Microbe Interact ; 33(7): 911-920, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32240064

ABSTRACT

A characteristic feature of a plant immune response is the increase of the cytosolic calcium (Ca2+) concentration following infection, which results in the downstream activation of immune response regulators. The bryophyte Physcomitrella patens has been shown to mount an immune response when exposed to bacteria, fungi, or chitin elicitation, in a manner similar to the one observed in Arabidopsis thaliana. Nevertheless, whether the response of P. patens to microorganism exposure is Ca2+ mediated is currently unknown. Here, we show that P. patens plants treated with chitin oligosaccharides exhibit Ca2+ oscillations, and that a calcium ionophore can stimulate the expression of defense-related genes. Treatment with chitin oligosaccharides also results in an inhibition of growth, which can be explained by the depolymerization of the apical actin cytoskeleton of tip growing cells. These results suggest that chitin-triggered calcium oscillations are conserved and were likely present in the common ancestor of bryophytes and vascular plants.


Subject(s)
Bryopsida/immunology , Calcium/pharmacology , Chitin/pharmacology , Bryopsida/genetics , Gene Expression Regulation, Plant , Plant Immunity , Plant Proteins/genetics , Plant Proteins/immunology
5.
New Phytol ; 228(1): 194-209, 2020 10.
Article in English | MEDLINE | ID: mdl-32367515

ABSTRACT

Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.


Subject(s)
Medicago truncatula , Gene Expression Regulation, Plant , Iron/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen Fixation , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Symbiosis
6.
J Exp Bot ; 71(22): 7257-7269, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32841350

ABSTRACT

Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


Subject(s)
Arabidopsis , Medicago truncatula , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen Fixation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Symbiosis
7.
Mycorrhiza ; 30(6): 781-788, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32914374

ABSTRACT

Arbuscular mycorrhizal fungi are critical participants in plant nutrition in natural ecosystems and in sustainable agriculture. A large proportion of the phosphorus, nitrogen, sulfur, and transition metal elements that the host plant requires are obtained from the soil by the fungal mycelium and released at the arbuscules in exchange for photosynthates. While many of the plant transporters responsible for obtaining macronutrients at the periarbuscular space have been characterized, the identities of those mediating transition metal uptake remain unknown. In this work, MtCOPT2 has been identified as the only member of the copper transporter family COPT in the model legume Medicago truncatula to be specifically expressed in mycorrhizal roots. Fusing a C-terminal GFP tag to MtCOPT2 expressed under its own promoter showed a distribution pattern that corresponds with arbuscule distribution in the roots. When expressed in tobacco leaves, MtCOPT2-GFP co-localizes with a plasma membrane marker. MtCOPT2 is intimately related to the rhizobial nodule-specific MtCOPT1, which is suggestive of a shared evolutionary lineage that links transition metal nutrition in the two main root endosymbioses in legumes.


Subject(s)
Medicago truncatula , Membrane Transport Proteins , Mycorrhizae , Ecosystem , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Membrane Transport Proteins/metabolism , Mycorrhizae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Symbiosis
8.
New Phytol ; 218(2): 696-709, 2018 04.
Article in English | MEDLINE | ID: mdl-29349810

ABSTRACT

Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.


Subject(s)
Cation Transport Proteins/metabolism , Copper/metabolism , Medicago truncatula/metabolism , Nitrogen Fixation , Plant Proteins/metabolism , Symbiosis , Biological Transport/drug effects , Cation Transport Proteins/genetics , Cell Differentiation/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Copper/pharmacology , Copper Transporter 1 , Electron Transport Complex IV/metabolism , Medicago truncatula/cytology , Multigene Family , Mutation/genetics , Nitrogen Fixation/drug effects , Nitrogenase/metabolism , Phenotype , Plant Proteins/genetics , Root Nodules, Plant/cytology , Root Nodules, Plant/drug effects , Root Nodules, Plant/metabolism , Saccharomyces cerevisiae/metabolism , Symbiosis/drug effects
9.
Int J Mol Sci ; 19(2)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29389847

ABSTRACT

Most effective nematicides for the control of root-knot nematodes are banned, which demands a better understanding of the plant-nematode interaction. Understanding how gene expression in the nematode-feeding sites relates to morphological features may assist a better characterization of the interaction. However, nematode-induced galls resulting from cell-proliferation and hypertrophy hinders such observation, which would require tissue sectioning or clearing. We demonstrate that a method based on the green auto-fluorescence produced by glutaraldehyde and the tissue-clearing properties of benzyl-alcohol/benzyl-benzoate preserves the structure of the nematode-feeding sites and the plant-nematode interface with unprecedented resolution quality. This allowed us to obtain detailed measurements of the giant cells' area in an Arabidopsis line overexpressing CHITINASE-LIKE-1 (CTL1) from optical sections by confocal microscopy, assigning a role for CTL1 and adding essential data to the scarce information of the role of gene repression in giant cells. Furthermore, subcellular structures and features of the nematodes body and tissues from thick organs formed after different biotic interactions, i.e., galls, syncytia, and nodules, were clearly distinguished without embedding or sectioning in different plant species (Arabidopsis, cucumber or Medicago). The combination of this method with molecular studies will be valuable for a better understanding of the plant-biotic interactions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/parasitology , Giant Cells/parasitology , Glycoside Hydrolases/metabolism , Plant Diseases/parasitology , Plant Roots/parasitology , Tylenchoidea/physiology , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cucumis sativus/genetics , Cucumis sativus/metabolism , Cucumis sativus/parasitology , Giant Cells/metabolism , Glycoside Hydrolases/genetics , Host-Parasite Interactions , Medicago/genetics , Medicago/metabolism , Medicago/parasitology , Microscopy, Confocal , Phenotype , Plant Diseases/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plant Tumors/genetics , Plant Tumors/parasitology , Plants, Genetically Modified
10.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28732146

ABSTRACT

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Subject(s)
Medicago truncatula/enzymology , Medicago truncatula/microbiology , Plant Proteins/metabolism , Rhizobium/physiology , Root Nodules, Plant/cytology , Root Nodules, Plant/enzymology , Zinc/metabolism , Cell Differentiation , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Homeostasis , Medicago truncatula/genetics , Models, Biological , Phenotype , Plant Proteins/genetics , RNA Interference , Root Nodules, Plant/genetics , Subcellular Fractions/metabolism
12.
Plants (Basel) ; 12(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36840125

ABSTRACT

On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.

13.
Plant Cell Environ ; 33(12): 2112-20, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20636489

ABSTRACT

The capacity to bind to biomolecules is considered to be the basis for any physiological role of boron (B). Legume arabinogalactan protein-extensin (AGPE), a major component of the infection thread matrix of legume nodules is a potential B-ligand. Therefore, its role in infection threads development was investigated in Pisum sativum grown under B deficiency. Using the AGPE-specific antibody MAC265, immunochemical analysis revealed that a 175 kDa MAC265 antigen was abundant in +B but much weaker in -B nodule extracts. A B-dependent complex involving AGPE and rhamnogalacturonan II (RGII) could be co-purified using anti-RGII antiserum. Following fractionation of -B nodules, MAC265 antigens were mostly associated with the bacterial pellet. Immunogold staining confirmed that AGPE was closely associated with the surface of rhizobia in the lumen of threads in -B nodules whereas in +B nodules, AGPE was separated from the bacterial surface by a sheath of capsular polysaccharide. Interestingly, colonies of rhizobia grown in free-living culture without B developed low capsule production. Therefore, we propose that B could be important for apical growth of infection threads by strengthening thread wall through a B-dependent AGPE-RGII interaction and by promoting bacterial advance through a B-dependent production of a stable rhizobial capsule that prevents AGPE attachment.


Subject(s)
Borates/metabolism , Pisum sativum/microbiology , Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/metabolism , Root Nodules, Plant/microbiology , Glycoproteins/metabolism , Mucoproteins/metabolism , Pisum sativum/metabolism , Pectins/metabolism , Plant Proteins/metabolism , Plant Root Nodulation , Root Nodules, Plant/metabolism , Symbiosis
14.
Metallomics ; 11(4): 735-755, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30734808

ABSTRACT

A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Metals/metabolism , Rhizobium/physiology , ATP-Binding Cassette Transporters/metabolism , Fabaceae/microbiology , Fabaceae/physiology , Iron/metabolism , Symbiosis
15.
J Plant Physiol ; 243: 153058, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31715490

ABSTRACT

Boron (B) deficiency affects the development of Pisum sativum nodules and Arabidopsis thaliana root meristems. Both organs show an alteration of cell differentiation that result in the development of tumor-like structures. The fact that B in plants is not only able to interact with components of the cell wall but also with membrane-associated glycoconjugates, led us to analyze changes in high mannose type N-glycans (HMNG). The affinoblots with concanavalin A revealed alterations in the N-glycosylation pattern during early development of nodules and roots under B deprivation. Besides, there is increasing evidence of a B role in animal physiology that brought us to investigate the impact of B deficiency on Danio rerio (zebrafish) development. When B deficiency was induced prior to early cleavage stages, embryos developed as an abnormal undifferentiated mass of cells. Additionally, when B was removed at post-hatching, larvae undergo aberrant organogenesis. Resembling the phenomenon described in plants, alteration of the N-glycosylation pattern occurred in B-deficient zebrafish larvae prior to organogenesis. Overall, these results support a common function of B in plants and animals associated with glycosylation that might be important for cell signaling and cell fate determination during development.


Subject(s)
Arabidopsis/growth & development , Boron/deficiency , Organogenesis, Plant/drug effects , Pisum sativum/growth & development , Polysaccharides/metabolism , Zebrafish/growth & development , Animals , Arabidopsis/metabolism , Glycosylation , Mannose/metabolism , Pisum sativum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Zebrafish/metabolism
16.
Front Plant Sci ; 10: 1780, 2019.
Article in English | MEDLINE | ID: mdl-32082345

ABSTRACT

Symbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires relatively large levels of transition metals. These elements are cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process mediated by a number of metal transporters and small organic molecules that facilitate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this molecule forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would result from the altered iron distribution in nas2-1 nodules shown with X-ray fluorescence. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.

17.
Plant Sci ; 270: 176-189, 2018 May.
Article in English | MEDLINE | ID: mdl-29576071

ABSTRACT

Significant advances have been made in the last years trying to identify regulatory pathways that control plant responses to boron (B) deficiency. Still, there is a lack of a deep understanding of how they act regulating growth and development under B limiting conditions. Here, we analyzed the impact of B deficit on cell division leading to root apical meristem (RAM) disorganization. Our results reveal that inhibition of cell proliferation under the regulatory control of cytokinins (CKs) is an early event contributing to root growth arrest under B deficiency. An early recovery of QC46:GUS expression after transferring B-deficient seedlings to control conditions revealed a role of B in the maintenance of QC identity whose loss under deficiency occurred at later stages of the stress. Additionally, the D-type cyclin CYCD3 overexpressor and triple mutant cycd3;1-3 were used to evaluate the effect on mitosis inhibition at the G1-S boundary. Overall, this study supports the hypothesis that meristem activity is inhibited by B deficiency at early stages of the stress as it does cell elongation. Likewise, distinct regulatory mechanisms seem to take place depending on the severity of the stress. The results presented here are key to better understand early signaling responses under B deficiency.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Boron/deficiency , Cyclins/genetics , Cytokinins/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Boron/metabolism , Cell Proliferation , Cyclins/metabolism , Gene Expression , Genes, Reporter , Meristem/genetics , Meristem/growth & development , Meristem/physiology , Mitosis , Mutation , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plants, Genetically Modified , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Signal Transduction
18.
Front Plant Sci ; 9: 1142, 2018.
Article in English | MEDLINE | ID: mdl-30131820

ABSTRACT

Boron (B) is an essential micronutrient for seed plants. Information on B-efficiency mechanisms and B-efficient crop and model plant genotypes is very scarce. Studies evaluating the basis and consequences of B-deficiency and B-efficiency are limited by the facts that B occurs as a trace contaminant essentially everywhere, its bioavailability is difficult to control and soil-based B-deficiency growth systems allowing a high-throughput screening of plant populations have hitherto been lacking. The crop plant Brassica napus shows a very high sensitivity toward B-deficient conditions. To reduce B-deficiency-caused yield losses in a sustainable manner, the identification of B-efficient B. napus genotypes is indispensable. We developed a soil substrate-based cultivation system which is suitable to study plant growth in automated high-throughput phenotyping facilities under defined and repeatable soil B conditions. In a comprehensive screening, using this system with soil B concentrations below 0.1 mg B (kg soil)-1, we identified three highly B-deficiency tolerant B. napus cultivars (CR2267, CR2280, and CR2285) among a genetically diverse collection comprising 590 accessions from all over the world. The B-efficiency classification of cultivars was based on a detailed assessment of various physical and high-throughput imaging-based shoot and root growth parameters in soil substrate or in in vitro conditions, respectively. We identified cultivar-specific patterns of B-deficiency-responsive growth dynamics. Elemental analysis revealed striking differences only in B contents between contrasting genotypes when grown under B-deficient but not under standard conditions. Results indicate that B-deficiency tolerant cultivars can grow with a very limited amount of B which is clearly below previously described critical B-tissue concentration values. These results suggest a higher B utilization efficiency of CR2267, CR2280, and CR2285 which would represent a unique trait among so far identified B-efficient B. napus cultivars which are characterized by a higher B-uptake capacity. Testing various other nutrient deficiency treatments, we demonstrated that the tolerance is specific for B-deficient conditions and is not conferred by a general growth vigor at the seedling stage. The identified B-deficiency tolerant cultivars will serve as genetic and physiological "tools" to further understand the mechanisms regulating the B nutritional status in rapeseed and to develop B-efficient elite genotypes.

19.
Front Plant Sci ; 9: 1985, 2018.
Article in English | MEDLINE | ID: mdl-30697224

ABSTRACT

Seeds accumulate iron during embryo maturation stages of embryogenesis. Using Arabidopsis thaliana as model plant, it has been described that mature embryos accumulate iron within a specific cell layer, the endodermis. This distribution pattern was conserved in most of the analyzed members from Brassicales, with the exception of the basal Vasconcellea pubescens that also showed elevated amounts of iron in cortex cells. To determine whether the V. pubescens iron distribution was indicative of a wider pattern in non-Brassicales Eudicotyledoneae, we studied iron distribution pattern in different embryos belonging to plant species from different Orders from Eudicotyledoneae and one basal from Magnoliidae. The results obtained indicate that iron distribution in A. thaliana embryo is an extreme case of apomorphic character found in Brassicales, not-extensive to the rest of Eudicotyledoneae.

20.
Aquat Toxicol ; 186: 50-66, 2017 May.
Article in English | MEDLINE | ID: mdl-28249228

ABSTRACT

The present study was aimed at investigating the role of intracellular free calcium, [Ca2+]c, in the early cellular response of the green alga Chlamydomonas reinhardtii to the emergent pollutant Triclosan (13.8µM; 24h of exposure). There is a growing concern about the persistence and toxicity of this antimicrobial in aquatic environments, where non-target organisms such as C. reinhardtii, a primary producer of ecological relevance, might be severely impacted. A mechanistic study was undertaken which combined flow cytometry protocols, physiological as well as gene expression analysis. As an early response, Triclosan strongly altered [Ca2+]c homeostasis which could be prevented by prechelation with the intracellular calcium chelator BAPTA-AM. Triclosan induced ROS overproduction which ultimately leads to oxidative stress with loss of membrane integrity, membrane depolarization, photosynthesis inhibition and mitochondrial membrane depolarization; within this context, Triclosan also induced an increase in caspase 3/7 activity and altered the expression of metacaspase genes which are indicative of apoptosis. All these adverse outcomes were dependent on [Ca2+]c. Interestingly, an interconnection between [Ca2+]c alterations and increased ROS formation by Triclosan was found. Taken altogether these results shed light on the mechanisms behind Triclosan toxicity in the green alga Chlamydomonas reinhardtii and demonstrate the role of [Ca2+]c in mediating the observed toxicity.


Subject(s)
Calcium/pharmacology , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/metabolism , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Acetylcysteine/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Calcium Signaling/drug effects , Calcium Signaling/genetics , Caspases/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/enzymology , Flow Cytometry , Fluorescent Dyes/metabolism , Gene Expression Regulation/drug effects , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Intracellular Space/drug effects , Intracellular Space/metabolism , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Photosynthesis/drug effects , Photosynthesis/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL